- Applications
 - General Purpose Computing
 - High-Availability Systems
 - » rapid error detection and correction => minimize downtime
 - » unacceptable downtime for software installation/updates
 - » examples AT&T switching systems, Tandem: software-intensive approach, Stratus: hardware approach.
 - Long-Life Systems
 - » mobile systems: airplanes, mass transit systems etc.
 - » the concept of deferred maintenance
 - » special considerations: highly redundant spacecraft systems
 - automatic reconfiguration vs. remote access
 - » down-times might not be of great concern

© 2016 A.W. Krings

Page: 1

CS449/549 Fault-Tolerant Systems Sequence 25

Fault-Tolerant Architectures

- Critical Computations
 - » real-time control systems and their timing sensitivity
 - » heavy computational workloads => multiple processors
 - » hard real-time environment
 - tasks have hard/soft deadlines
 - failure to meet deadlines => catastrophic results
 - » need for provably correct algorithms
 - formal verification methods
 - no unexpected side effects
 - » classic systems

© 2016 A.W. Krings

Page: 1

• Brief discussion of some classic systems

- AT&T (highly available switching systems)
 - » goal: 2 hours downtime in 40 years (3 min/year :-)
 - » Pra96 table 2.7, pg 104: Probability of operational outage due to various sources.
 - » User implements part of redundancy, i.e. redial
 - » Pra96 table 2.8, pg 105: Levels of recovery in a switching system.
 - system features include
 - hardware lock-step duplication
 - online processors write to both stores
 - byte parity on data paths
 - modified hamming code on main memory
 - maintenance channel for observability/controllability of processors
 - extensive self checking hardware (30% +)

© 2016 A.W. Krings

Page: 1

CS449/549 Fault-Tolerant Systems Sequence 25

Table 27	Probability of	Operational	Outage	Due to	Various Sourcesa	ı
I able 2.7.	FIODADIIILY OF	Operational	Oulage	Due to	vallous Soulces	

Switching Systems ^b (Toy, 1978)	Bellcore ^b (Ali, 1986)	Japanese Commercial Users	Tandem (Gray, 1985)	Tandem (Gray, 1987)	Northern Telecom	Mainframe Users
0.20	0.26 ^d	*g	0.18	0.19	.19	.45
0.15	0.30e	0.75g	0.26	0.43	.19	.20
100	<u> </u>	*g	0.25	0.13		.05
0.65 ^c	0.44^{f}	0.11	0.17	0.13	.33	.15
an II- 11	_	0.13	0.14	0.12	.28 ^h	.15
	0.20 0.15	(Toy, 1978) (Ali, 1986) 0.20 0.26 ^d 0.15 0.30 ^e	(Toy, 1978) (Ali, 1986) Users 0.20 0.26 ^d *g 0.15 0.30 ^e 0.75 ^g	(Toy, 1978) (Ali, 1986) Users (Gray, 1985) 0.20 0.26 ^d *g 0.18 0.15 0.30 ^e 0.75 ^g 0.26 — - *g 0.25 0.65 ^c 0.44 ^f 0.11 0.17	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(Toy, 1978) (Ali, 1986) Users (Gray, 1985) (Gray, 1987) Telecom 0.20 0.26 ^d *g 0.18 0.19 .19 0.15 0.30 ^e 0.75 ^g 0.26 0.43 .19 — - *g 0.25 0.13 - 0.65 ^c 0.44 ^f 0.11 0.17 0.13 .33

^aDashes indicate that no separate value was reported for that category in the cited study.

© 2016 A.W. Krings

Page: 1

^bFraction of downtime attributed to each source. Downtime is defined as any service disruption that exceeds 30 seconds duration. The Bellcore data represented a 3.5-minute downtime per year per system.

^cSplit between procedural errors (0.3) and recovery deficiencies (0.35).

 $^{^{\}rm d}47\%$ of the hardware failures occurred due to the second unit failing before the first unit could be replaced.

^eRecovery software.

 $^{^{\}mathrm{f}}\mathrm{Split}$ between procedural errors (0.42) and operational software (0.02).

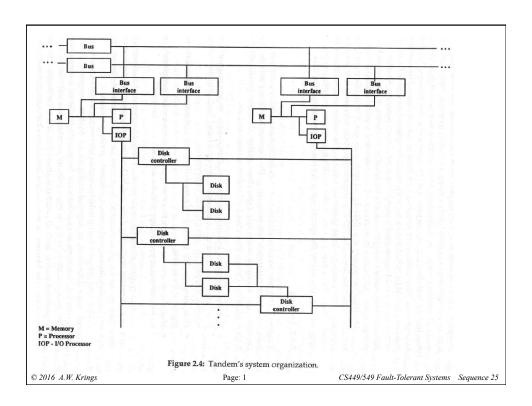
⁸Study only reported probability of vendor-related outage (i.e., 0.75 is split between vendor hardware, software, and maintenance).

h(.15) attributed to power.

Table 2.8: Levels of Recovery in a Switching System

Phase	Recovery Action	Effect
1	Initialize transient memory	Affects temporary storage, no calls lost
2	Reconfigure peripheral hardware; initialize all transient memory	Lose calls in process of being established, calls in progress not lost
3	Verify memory operation, establish a workable proces- sor configuration, verify program, configure peri- pheral hardware, initialize all transient memory	Lose calls in process of being established, calls in progress not affected
4	Establish a workable processor configuration; configure peripheral hardware, initialize all memory	All calls lost
016 A.W. Krings	Page: 1	CS449/549 Fault-Tolerant Systems Sequence 2

- Tandem

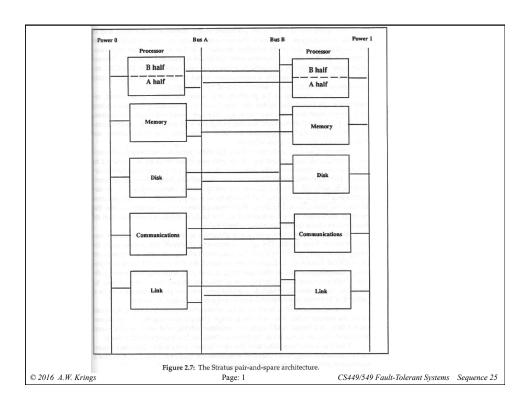

- » High-availability systems for transaction processing.
- » NonStop1 -- first commercial OS designed for high availability.
- » Design objectives
 - nonstop operation: non-intrusive fault detection, reconfiguration and repair.
 - data integrity: no single hardware failure can compromise data integrity.
 - modular system expansion: software application not affected by adding expansion hardware.
- » No single point of failure: dual paths to all system components, including disks, I/O controllers, processor replication, power supplies, RAID 1 disks, and message based OS.

© 2016 A.W. Krings

Page: 1

- » Pra96 fig 2.4, pg 112
 - loosely shared-memory architecture
 - duplication of all components
- » Hardware/Software modules designed to behave like a FSP
- » Retries on I/O devices
 - 1) hardware retry, assuming transient fault
 - 2) software retry
 - 3) alternate path retry
 - 4) alternate device retry
- » Check point recovery mechanism
- » Maintenance and diagnosis system analyzes the event log and automatically calls for field replaceable units.

© 2016 A.W. Krings Page: 1 CS449/549 Fault-Tolerant Systems Sequence 25



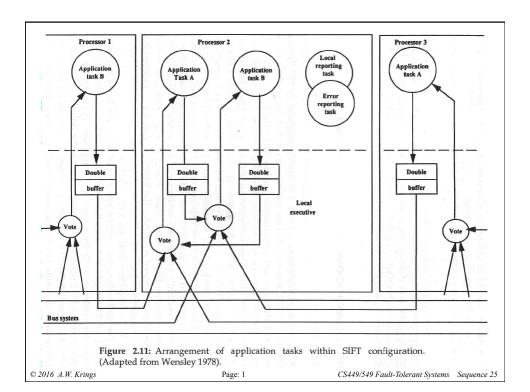
- Stratus

- » Continuous checking of duplexed components
- » Pair and Spare Architecture Pra96, fig 2.7, pg 117
 - 2 processor boards with 2 microprocessors each
 - each board operates independently
 - bus halves are wired-ORed with their counterparts
- » One module consists of replicated power, backplane buses
- » Modules can be interconnected => communicate via message passing SIB (Stratus Intermodule Bus).
- » Boards compare their halves and remove themselves upon disagreement between A and B halves, indicating maintenance interrupt => FSP behavior
- » Board is diagnosed for transient fault and possibly returned to service. Permanent failure is reported by phone to customer assistance center.

© 2016 A.W. Krings

Page: 1

- Spacecraft Systems: Long period of unattended operation
 - » Design considerations include effects of environment, power, temperature, stability, vibration etc.
 - » Systems range from weather, and communication satellites in varies orbits to deep-space probes.
 - » Propulsion: controlling fuels and stabilization.
 - » Power: regulating and storing power from different sources, e.g. solar panels, batteries.
 - Table 2.13, pg 125, Typical Power Subsystem
 - » Data Communication: communication with earth using uplinks, data stream from craft using redundant downlinks
 - » Attitude Control: redundant sensors, gyros, momentum wheels
 - » Command and Control: hardware testing of parity, illegal instructions, mem. addresses, sanity checks, timing mechanisms


© 2016 A.W. Krings Page: 1 CS449/549 Fault-Tolerant Systems Sequence 25

Element	Tracking Solar Array	Solar Array Drive	Slip-Ring Assembly	Charge Controller	Batteries	Power Regulation	Power Distributio
Redundancy	Extra capacity series/parallel connections of individual solar cells allows for graceful degradation	Redundant drive elements and motors	Parallel rings for power transfer	Automatic monitoring and control of battery charge state	Series/parallel connections; diode protec- tion	Redundant spares	Automatic load shedding
Systems Characteristics	ibutes of the Voyage	1 6	Power	Data Communication	Attitus Cont		Command and Payload
Planetary probe Three-axis stabil Mission life: 7 ye		mal	radioactive ther- generators; W at Jupiter	Downlink, 2; uplink two antennas (hig gain and low gain	h and Canor		command rate: 16 bp edundant computers, 4K words each; data storage on board

- SIFT (software implemented fault tolerance) (70s)
 - » intended for real-time aircraft control
 - » assumption that future airplanes would be designed to be unstable
 - » loss of computer for even milliseconds could lead to catastrophe
 - » how does one verify systems when fail rates are 10^{-10} ?
 - » approach: mathematically prove correctness of system software
 - » hardware is assumed to use independent computers using fully connected graph topology, implementing unidirectional series links.
 - » software divided into tasks, results from redundant tasks are voted upon. (Actually it is the inputs to tasks that is voted on).
 - » 3 processor example Pra96, fig 2.11, pg 130
 - input to A is output of voter with 3 inputs

© 2016 A.W. Krings

Page: 1

