
 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes
◆ Discussion based on

– Byzantine Generals in Action: Implementing
Fail-Stop Processors, Fred B. Schneider,
ACM Transactions on Computer Systems,
Vol. 2, No..2, pp. 145-154, May 1984.

– Reasons why this paper is still of interest.

– What would it take to guarantee that a fault
will be benign?

1

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes
◆ FSP-Properties

– Halt-on-Failure Property
» It will halt before performing an erroneous state transition visible

to other proc's.
– Failure Status Property

» Any non-faulty process can detect the halting of any other
process.

– Stable Storage Property
» Part of the processes memory is “stable”, i.e.

■ unaffected by failure
■ readable by other processors

2

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

◆ Given FSPs, design a reliable system
– Non-trivial problem! (e.g. Hypercube)

» needs re-routing (optimal)
» reconfiguration
» reallocation

◆ How does one implement a FSP?
– Impossible with finite hardware
– Build a k-FSP
– Fails safe for

3

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

– Assume stable storage, then the behavior of a FSP is
characterized by:

IF k+1 requests AND
 requests are identical AND
 requests are from different processes AND
 NOT failed
THEN
 process operation
ELSE
 failed=TRUE

– Stable storage assumption may be quite optimistic.
– Special design-considerations are necessary.

4

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

– K-FSP are based on two types of real processes

5

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes
– Block Diagram

6

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

◆ Assumptions
– Network Assumptions

» Messages are delivered uncorrupted
» Origin of messages can be authenticated by receiver

– Operating Assumptions
» Ps fail independently
» Failure of P is detected by S-Processes when P-Processes try to

write.
» Disagreement on a write request is confirmed by the S-Processes.
» Agreement on a request must be reached before executing the

write.
» Only M1 ,M2, ..., M2k +1 are visible to outside (of FSP).

7

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

– Redundant in all P-Processes:
» P broadcasts write request to all S's
» S's exchange values+vote (Byzantine safe). P is commander, S's

are lieutenants.
– Operation

 IF
 all S agree
 THEN
 write
 ELSE
 stop machine

8

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

◆ Stable Storage
– Majority of copies are correct and identical.
– A non-faulty FSP can always write to its own stable

storage.
– Any non-faulty process can read any stable storage.
– Value of a memory location is maj(M1, ... , M2k +1)
– An S-proc can write:

IF exactly 1 request is received from each P
AND all proc's are identical
THEN write
ELSE set a “failed” flag in memory and stop

9

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

◆ On the Number of Processors
– Assume the application needs N processors

» If we want to tolerate k faults we need N + k FSPs
» i.e. (N + k) k-FSPs

– Naive implementation
» to implement 1 FSP

■ k + 1 P-Proc's and 2k + 1 S-Proc's = 3k + 2
» then to implement the N+k FSPs

■ (N + k)(3k + 2) that’s a lot of processors!

10

 © 2016 A.W. Krings CS449/549 Fault-Tolerant Systems Sequence 23

Fail-Stop Processes

– It could be considered wasteful to dedicate an entire
processor to running an S-Process.

– Therefore assume a single processor is able to run s
S-Processes.

11

