Clock Synchronization

- Reading a Remote Clock

- Paper by Flaviu Cristian (Cri89a)
- "Probabilistic Clock Synchronization"
- Method for reading remote clocks
- Systems assumed to have random unbounded communication delays.
- Approach does not guarantee that a processor can always read a remote clock.
- A process can read the clock of another process with a given precision with a probability as close to 1 as desired.
- After reading clock, the actual reading precision is known.

Clock Synchronization

- The Problem of Reading Remote Times
- Process P sends message ("time $=$?") to process Q. Process Q replies with message ("time $=T$ ")
- When P receives the message ("time $=T$ "), what time is it in Q^{\prime} s clock?
" i.e. what is the time displayed by Q ' s clock?
" one can only try to derive an interval.
- Definitions:
» $t \quad=$ the real-time when P receives the message from Q.
» $C_{Q}(t)=$ value displayed by Q^{\prime} s clock at real-time t
$» \min =$ minimal delay to send message from P to Q or vice versa.
" $D \quad=$ half the roundtrip delay measured by P.
- Note: small letters/symbols indicate real times

Clock Synchronization

- Let $(\min +\alpha),(\min +\beta), \alpha, \beta \geq 0$ be the real time delays for sending and returning a message.
" message path: $P \rightarrow Q \rightarrow P$
» $\min +\alpha$ accounts for message time from P to Q
» $\min +\beta$ accounts for message time from Q to P
- Let $2 d$ be the real time roundtrip delay, then

$$
2 d=2 \min +\alpha+\beta
$$

- We are interested in β, since this is the time that has passed since Q wrote its time in the message to P. How big is β ?

Clock Synchronization

- Using $2 d=2 \min +\alpha+\beta$ we get

$$
0 \leq \beta \leq 2 d-2 \min
$$

since α could be 0 .

- Q^{\prime} s clock can run at any speed in $[1-\rho, 1+\rho]$, where ρ is again the clock drift rate.
- Thus

$$
C_{Q}(t) \in[T+(\min +\beta)(1-\rho), T+(\min +\beta)(1+\rho)]
$$

substituting β from above
$C_{Q}(t) \in$
$[T+(\min)(1-\rho), T+(\min +2 d-2 \min)(1+\rho)]$

Clock Synchronization

- Now, relate
$C_{Q}(t) \in[T+(\mathrm{min})(1-\rho), T+(2 d-\min)(1+\rho)]$
to the time measured in P.
- Since P^{\prime} s clock could have maximum drift we must assume

$$
\begin{gathered}
d \leq D(1+\rho) \\
\begin{aligned}
& C_{Q}(t) \in[T+\min (1-\rho), T+(2 D(1+\rho)-\min)(1+\rho)] \\
&=\left[T+\min (1-\rho), T+2 D(1+\rho)^{2}-\min (1+\rho)\right] \\
& \approx[T+\min (1-\rho), T+2 D(1+2 \rho)-\min (1+\rho)]
\end{aligned} \\
\text { - This is the smallest interval possible }
\end{gathered}
$$

Clock Synchronization

- Processor P cannot determine where in the interval Q^{\prime} s clock value is.
- Suggestion:

Estimate C_{Q} by function $C_{Q}^{P}(T, D)$

- The actual error is

$$
\left|C_{Q}^{P}(T, D)-C_{Q}(t)\right|
$$

- What is a good choice for $C_{Q}^{P}(T, D)$ best choice for function is to choose midpoint

Clock Synchronization

- Midpoint

$$
\begin{aligned}
& 1 / 2(T+\min (1-\rho)+T+2 D(1+2 \rho)-\min (1+\rho))= \\
& 1 / 2(2 T+\min (1-\rho-1-\rho)+2 D(1+2 \rho))= \\
& T-\rho \min +D(1+2 \rho)
\end{aligned}
$$

- Thus $C_{Q}^{p}(T, D) \equiv T-\rho \min +D(1+2 \rho)$
" this is " P 's reading of Q 's clock"
- The maximal error this can cause is half the largest possible interval.
$[T+\min (1-\rho), T+2 D(1+2 \rho)-\min (1+\rho)]$

Clock Synchronization

$1 / 2[T+2 D(1+2 \rho)-\min (1+\rho)-(T+\min (1-\rho))]=$
$1 / 2[T+2 D(1+2 \rho)-\min (1+\rho)-T-\min (1-\rho)]=$ $1 / 2[2 D(1+2 \rho)-\min (1+\rho)-\min (1-\rho)]=$ $1 / 2[2 D(1+2 \rho)-2 \mathrm{~min}]=$
$D(1+2 \rho)-\min$

- Thus largest possible error is:

$$
e=D(1+2 \rho)-\min
$$

- Any other estimate choice leads to a bigger maximum error.

