Clock Synchronization

+ Why do we need clock synchronization?
— process coordination

e.g. real-time process control systems require that accurate timestamps be
assigned to sensor values to aid in correct data interpretation.

- performance monitoring
. e.g. performance statistics based on elapsed time
— deadline detection
e.g. determination if deadlines have been violated
— distributed agreement
. e.g. assumed loose synchronization for atomic broadcast

© 2016 A.W. Krings Page: 1 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization
+ Clocks

- atomic clocks
extremely accurate
but: too expensive, too big, too unreliable and complex
- crystal oscillator
typical computer clock
small, cheap, simple
fairly reliable with fail rates of about 10-%/h
accuracy of 103 to 106
m resulting in drifts of 1 to 10 us/s
m 3.6to36 ms/h
- clocks based on power-line frequency

. power grid in the Northern US typically drifts 4 to 6 seconds from real
time over the course of an evening

© 2016 A.W. Krings Page: 2 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

+ Synchronization
- external synchronization

maintain processor clock within some given maximum derivation from a
time reference external to the system

- internal synchronization

. keep processor clocks synchronized within some maximum relative
derivation of each other

© 2016 A.W. Krings Page: 3 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

¢ Definitions

— “Understanding Protocols for Byzantine Clock Synchronization”, Fred
Schneider, 87-859, Aug. 1987, CS Dept., Cornell University.

- Real-Time (t)
, unobservable -- can only be approximated
“observes” events of different processors
m observes and records all events
= all observation delays are identical, i.e. there is no time skew
m all events are immediately time-stamped, i.e. there is no processing delay
- Real-Clock C,(t) of processor p
function mapping real time ¢ into a clock reading C (1)
thus C (1) is the value of the clock in processor p at real time ¢

© 2016 A.W. Krings Page: 4 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

- C,(1) is characterized by w, p and x

. constant W: defines the range of initial values

m hardware initial value

0=<C,(0)=<p

, constant K is the interval between ticks, i.e. the length of a tick, also
defining the granularity
constant p is the upper bound on the clock drift rate

thus at each tick a clock is incremented (advanced) by a varying real
number value v, with

(I-pxk=sv=s(1+p)x

hardware rate

C(t+x)-C (¢
O<(1—p)s%s(l+p)for0$t

© 2016 A.W. Krings Page: 5 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

— physical clock
hardware clock
simple counter
constant rate (+/- P)
, no correction mode (independent of protocol)

. source of clock drift

— virtual clock 6 "

» clock synchronization protocols implement virtual clocks é‘p at each
processor p.

can be started, stopped, corrected

© 2016 A.W. Krings Page: 6 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

» mapping
t—=C,(1)—=C,()
t: real time
C,(¢): hardware clock reading at ¢

C,(2): virtual clock reading at ¢

Similarly to real clocks virtual clocks have
m (1 defines the range of initial values
u K is the tick length, may be >> K
m 0 is the upper bound on the clock drift rate

© 2016 A.W. Krings Page: 7 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

¢ Objective
- Virtual Synchronization

» given two processors p and ¢
1C, () -C, ()= (2.3)

. here 5 defines how close the virtual clocks are synchronized

— Virtual Rate
L Cu)-Co
0<(l-p)=—> = F—<(+p)for0O=t (2.4)
© 2016 A.W. Krings Page: 8 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

+ Reliable Time Source (RTS)

- amechanism which periodically makes the “correct” time available
to all processors so that all processors can adjust their local virtual
clock to the RTS.

- requirements

. time is distributed frequently enough

processor clocks will not drift too far apart in the interval between
adjustment

. no processor has to adjust its clock by too much
the adjustment can be spread over the interval that precedes the next
resynchronization
- if these requirements can be met, a reliable time source can solve the
synchronization problem.

© 2016 A.W. Krings Page: 9 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

¢ RTS Definitions
- RTS is periodic
. sequence of events at real times

1 2 3
tRTS 4 tRTS > tRTS EA

— Periods are stable within a fixed bound. i.e.

V. =sr

<
min period = rmax

where 7, and 7, are constants

- t;, is the real-time at which processor p detects event ¢ R7s

© 2016 A.W. Krings Page: 10 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

+ For a process to qualify as an RTS is must satisfy the
following conditions:
- RTS1:

. bounded period: a reliable time source generates a sequence of events at
real times such that
1 i+1 i
(tres =O)A(Vi: O<i: 7y < trrs — rrs < Toax)

bounded reading: the real time at which a processor p detects the event
produced at #;,, satisfies

(tp =0)A(Vi: 1@z 0=t =ty <)

where f is a constant.
the first part in the above terms indicate that protocol & clocks start at
real time 0

© 2016 A.W. Krings Page: 11 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

- RTS2:

. Real Time Source provides a useful value to all non-faulty processors to
be used for correction, i.e.

At 1, processor p obtains a value V, that can be used

in adjusting c , consistent with (2.3) and (2.4)

— Note: it is not implied that the correct time is always available to
processors, but it is available periodically

- RTSI1 and RTS2 can be easily implemented using a single clock, but
this clock is a single-point-of-failure

RTS1 achieved by using individual processor clocks to signal periodic
resynchronization event

RTS2 achieved by each processor producing fault-tolerant average, e.g.
median value.

© 2016 A.W. Krings Page: 12 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

Resetting a virtual clock C,
- Typically “adjusting” a clock can be thought of as
“resetting”.

- Atreal time 0, a processor uses virtual clock (A?;,

and starts a new virtual clock ¢+ at real time t;” after
detecting 755

. i i+1 b i
- Thus ininterval ¢, <7 <t,” wehave C,(z) = C,(2)

© 2016 A.W. Krings Page: 13 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Implementing virtual clock C;,

- At processor p take hardware clock C, and add adjustment
value resulting from clock synchronization protocol, i.e.

Ci(¢) = C (1) + FIX' (C, (1))

~ here FIX,(C, (1)) = FIX,(T) isa correction
function.
note: T'is the clock time, whereas ¢ is the real-time

need to implement a “smooth” correction function to avoid big
jumps in é‘[f) ,i.e. to not violate the virtual rate (2.4)

© 2016 A.W. Krings Page: 14 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

— FIX, (T) spreads any change in its correction to C, over
an adjustment interval (Al), or Al clock seconds.

- Let adj’, be the cumulative adjustment to implement (AT;
from C,

— Then adj,, —adj,”" is the additional, incremental
amount of correction added during period i.

— The resulting “gradual” correction function is

elapsed real clock reading

FIX; (T) = I since beginning of period I
o (adj, —adj, " Y (min(C, () = C,(z,), AD))
adj,” + T

/

previous accumulated
correction

© 2016 A.W. Krings Page: 15 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

¢ Effects of Al

- If AI <K then instantaneous resynchronization
- Else continuous resynchronization

- FIX ;, (7)) is a linear interpolation of the adj. function,
and is a step-function if clock is discontinuous

adji7

-i—1

adj,

[[
i+1
p tP

~
~.

© 2016 A.W. Krings Page: 16 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

Definition of adj. function

© 2016 A.W. Krings

define a convergence function CF

then
adj’' = CF[p,C{()'"),....,Cy ()= C, (£

note that é} (z.}") is the virtual time when
processor p recognizes rpys

i+1

Thus function adj;"" gives the amount that C, (z,"")
differs from C, (257"

Note that it is a function of other clock readings

Page: 17 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Clock Synchronization Protocol

© 2016 A.W. Krings

i= l;adjg =adj;, =0
do forever
i+l

1) detect event generated at time #;;

t;” = real time now

2) adj’*' = CFp,C,(£"),....C (£7)]- C, (£5)
3) calculate FLX' (C, (1)) from adj'"'
4)i=i+1

end

Page: 18 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

Implementation Issues
i+l

~ step 1: how to “detect event generated at time 75

- step 2: how does one processor read the virtual clocks at
another processor

- step 3: what is a valid CF function

© 2016 A.W. Krings Page: 19 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Detecting Resynchronization Events (step 1)
- detect event generated at time #5 by using our own
approximately synchronized virtual clock
~ count to some predefined value R, i.e. when C? = iR

start next cycle

— can be done using timer etc.

— thus
z;” = time at which processor p starts its cycle
i+1 . . .
tp7s = time at which earliest correct clock starts new cycle
© 2016 A.W. Krings Page: 20 CS449/549 Fault-Tolerant Systems ~ Sequence 19

10

Clock Synchronization

- since clock advances with(1 = ©) we get

R R
’/;nin_1+pA ’/;'nax_l_

5

- recall from RTS1 that 0= (¢}, —#3,5) = B

- furthermore, recall from (2.3) that slowest clock lags
fastest clock by at most &

~

— then the slowest clock must reach iR no later than
— thus

~

1—-p

© 2016 A.W. Krings Page: 21 CS449/549 Fault-Tolerant Systems Sequence 19

Clock Synchronization

Reading other Clocks (step 2)

— Using Correction Table
Processor p occasionally queries other processors, €.g. ¢
Processor g responds with time stamped message
. . i
Processor‘ p maintains table 7, [1,..., V]
13 . . A,.
where T, [q] is used to approximate C; (¢)

ie. .

Tp[CI] = C - (Cp(tnow) - I_‘min)
here C is éq (z
I in is the minimum propagation delay

T ax is defined respectively

reply)

Is assuming the minimum propagation delay realistic?

© 2016 A.W. Krings Page: 22 CS449/549 Fault-Tolerant Systems ~ Sequence 19

11

Clock Synchronization

— Clock Reading Error
» Let A, (¢)be the error in p’ s approximation of C; (¢)

» Then, assuming A is the maximum clock reading error
X,(q) =
rmax - l—‘min + (p + p’\)(lreadp (q)) = A

where lread ,(q) is the time since r;[q] was logged,

and A is the max clock reading error.

here T, —T,.. isthe dominating term w.r.t. reading error
» therefore we focus on minimizing propagation and processing
delays
- Note:

» using periodic queries reduces number of messages by half, but
can result in significant higher I, — T,
© 2016 A.W. Krings Page: 23 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

¢ Convergence Functions (CF) (step 3)

— Multiset
» collection of objects similar in concept to a set
» different from set in that not all elements need to be distinct
» number of times a particular object (value) appears in a multiset is
called the multiplicity of that object
- Convergence Function arguments are:
» processor evaluating CF
» values x,, 1=¢g = N of values from processor g

© 2016 A.W. Krings Page: 24 CS449/549 Fault-Tolerant Systems ~ Sequence 19

12

Clock Synchronization

1) Monotonicity of CF
» given two multisets X and Y (monotonically non-decreasing)
cif x, =y, Vi, 1=i< N implies

CF(p,X;,X5,...,Xy) <= CF(P, Y1, YV555Vy)

2) Translation Invariance
» relative values matter (and not absolute values)
thus

CF(p,x, +V,...,xy +V)=CF(p,X,....,Xy) +V

» this allows comparison of values computed by CF at different
times, i.e. values of CF are not affected by shift in time.

© 2016 A.W. Krings Page: 25 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

3) Precision Enhancement Property
» require convergence

m Consider CF value of two processors p and g using at least N-k
similar values. (k is the number of faulty elements).

m CF value of p and g should be closer than x, and x, were.
» property:
|CF(p,X,,%,5...s X)) = CF(q, 31,155, V)= (0, €)
if

m all non-faulty x; are within & from each other, i.e. 8 = max|x; - x;

m for corresponding ;s & = max| -yl
(recall that 3 is the max skew in reading of correct clocks)

m for each non-faulty pair |x;, — y,|=< €

(8, ¢) is called the precision function
m(d,€8) <& = convergence

© 2016 A.W. Krings Page: 26 CS449/549 Fault-Tolerant Systems ~ Sequence 19

13

Clock Synchronization

- 4) Accuracy Preservation Property
» this basically prevents big jumps

» property:
|CF(p,x,,X,,...,Xy) — X, |< a(5)

where @ (9) is called the accuracy function
. if _

ladji*! — adjt|=< a(8)

P

then the adjustment is bounded

© 2016 A.W. Krings Page: 27 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

Examples of functions satisfying 4 conditions
- Egocentric Average:
» take the average of all values that are no more than 8 from x,
note:

= watch out, there are definitions of egocentric algorithms that replace all
values not within the range with your own value.

- Example
CF(p,x;,x,,...,x,) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
assume 0 = 3, here we have 13 values, 3k+1=N, thus k=4
sorted multiset: {3, 3,4,4,4,5,5,5,6,6,7,11,22}

» since x,=5 we have to consider all values in the range [2,8]

. CF: AVG(3, 33 49 43 49 53 59 53 69 63 7) :473

© 2016 A.W. Krings Page: 28 CS449/549 Fault-Tolerant Systems ~ Sequence 19

14

Clock Synchronization

Examples of functions satisfying 4 conditions
- Fast Convergence Algorithm:

take average of all values that are within d from at least N-k values

m So the question to ask for each value is: is the “neighborhood” of the value
large enough, i.e., N-k, to be included?

the degree k of fault tolerance is characterized by 3k+1=N,
- 9 is the range of values

- Example
CF(p.x;Xy,...x,) = CF(2,4,5,3,4,6,7,11,6,22,4)
assume 0 =k =3, then N-k=10-3=7
sorted multiset: {3,4,4,4,5,6,6,7,11,22}
,ask: “is value x within 3 from at least 7 other values?”

m e.g., value 4 results in interval [1,7]. Since there are 8 values in the interval
value [4-3,4+3] =[1,7] is included.

CF= Ave(4,4,4,5,6,6)

© 2016 A.W. Krings Page: 29 CS449/549 Fault-Tolerant Systems ~ Sequence 19

Clock Synchronization

Examples of functions satisfying 4 conditions

— Fault-tolerant Midpoint:

» reduce k highest and lowest values and average both extreme values
= Midpoint: (max_value + min_value) /2 (after reduction of k extremes)
= note this is not the median value in the sorted array of values!!!!

- Example
CF(p,x,.x,....x,) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
sorted multiset: {3, 3,4,4,4,5,5,5,6,6,7,11,22}

» with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}

. CF= (4+6)12=5

© 2016 A.W. Krings Page: 30 CS449/549 Fault-Tolerant Systems ~ Sequence 19

15

Clock Synchronization

Examples of functions satisfying 4 conditions
- Fault-tolerant Average:
reduce £ highest and lowest values and select average over all remaining
» more general: MSR

- Example
CF(p,x,,x,,....x,) = CF(2,4,5,3,4,6,7,11,6,22,4,3,5,5)
» sorted multiset: {3,3,4,4,4,5,5,5,6,6,7,11,22}
» with k = 3 the reduced multiset is {4, 4, 5, 5, 5, 6, 6}
, CF= Ave(4,4,5,5,5,6,6)=5

© 2016 A.W. Krings Page: 31 CS449/549 Fault-Tolerant Systems ~ Sequence 19

16

