Davis / Wakerly

- The following discussion is based on a paper by Davis and Wakerly
- Synchronization and Matching in Redundant Systems
- IEEE Trans. on Computers
- Vol. c-27, No 6, June 1978
- This is an example of what can happen when one can make assumptions about the capabilities of components of the system
- Main objective:
- this is an old paper, but there are important messages, e.g.: agreement can be "rolled out" in (or supported by) hardware " one can manipulate the fault assumptions

Davis / Wakerly

- Hardware aided solution

- requires $N \geq 2 t+1$ processors + extra hardware
- Synchronizer module

$$
\text { voter }- \text { delay } d
$$

Davis / Wakerly

- processors with synchronizer modules

Davis / Wakerly

- Configuration
$N \geq 2 t+1 \equiv$ \# of lanes $\quad S \geq t+1 \equiv$ \# of stages

Davis / Wakerly

\author{

- Simplex: Data Transition Error
}

Davis / Wakerly

- Hardware Interstages $=$ Broadcast Repeaters
- Processors vote on multiple copies received

Davis / Wakerly

- Simplex

- Case 1: Processor A is faulty (commander is traitor)
" Interstages may receive different values
" But: each interstage receives only ONE value
" Each interstage correctly forwards the values received
" Each processor receives the SAME three values
" Majority votes are identical
- Case 2: An Interstage is faulty (commander is loyal)
" All interstages receive the same value from Processor A
" Two correct interstages forward correct value
" Each processor receives 2 correct values
" 2-of-3 majority

Davis / Wakerly

Difference from OM(1) Algorithm

- Processor Broadcast $=>$ Round 0 (initial broadcast)
- Interstage Broadcast $=>$ Round 1 (rebroadcast)
- Single-fault lies either in processor or in interstage, but not in both!
" fault can not cause error in both rounds
" therefore there is one error free round
" same effect as discarding data in $\mathrm{OM}(1)$ algorithm
" can thus achieve agreement without discarding data
- Result: can achieve agreement with 3 processing lanes instead of 4 processors required by $\mathrm{OM}(1)$
- Disadvantage: requires extra hardware (stages)

Davis / Wakerly

- Multiplex Solution
- Option 1: just replicate Simplex Solution
» each interstage receives 3 messages and broadcasts 9 messages
" each processor receives 9 values to vote upon

Davis / Wakerly

- Option 2: Install voters in interstages
" each interstage receives 3 messages and broadcasts 3 messages each processor receives 3 values to vote upon

Davis / Wakerly

- Multiplex

- Case 1: Processor A is faulty (commander is traitor)
» Interstages may receive different values
" Interstage may send different values
" But: each interstage sends the same value to all processors
" Each processor receives the SAME set of values
" Majority votes are identical
- Case 2: An Interstage is faulty (commander is loyal)

All interstages receive identical sets of values
" Two interstages forward correct value to all processors
" Each processor receives 2 correct values
All processors get the same majority

Davis / Wakerly

- Hardware Requirements

- Number of Lanes (rows) = 3
" need to get 2-of-3 majority
- Number of Stages (columns) $=2$
» needed to assure one error free round
" agreement is achieved at output of first non-faulty state.
" once agreement is achieved, a minority of faulty nodes cannot disrupt it.

Davis / Wakerly

- Summary

	Davis / Wakerly	$\mathrm{OM}(\mathrm{t})$
	$N \geq 2 t+1$	$N \geq 3 t+1$
	$S=t+1$	$r \geq t+1$
HW complexity messages	$2 t^{2}+3 t+1$	$3 t+1$
	$2 t^{2}+3 t+1$	$O\left(N^{t+1}\right)$

