- Part of this discussion is based on the paper
- Petri Nets: Properties, Analysis and Applications
 - by Tadoa Murata, Proc. IEEE, Vol. 77, No. 4, April 1989.

Petri Nets

- graphical and mathematical modeling tool
- tool for describing systems characterized as being:
 - » concurrent, asynchronous, distributed, parallel, nondeterministic and/or stochastic

© 2016 A.W. Krings

Page: 1

CS449/549 Fault-Tolerant Systems Sequence 11

- History
- 1962: Carl Adam Petri's submitted his dissertation at the Uni.
 Darmstadt, Germany
- 1970: early development was published by A.W. Host and in the records of the 1970 Project MAC Conference on Concurrent Systems and Parallel Computation
- **1970-75:** Computation Structure Group and MIT was most active
- 1975: conference on Petri Nets and Related Methods at MIT
- 1979: 135 researchers assembled in Hamburg, Germany, for 2-week advanced course on General Net Theory of Processes and Systems
- 1980: first European Workshop on Applications and Theory of Petri Nets, Strasbourg, France.
 - check out Murata's paper for the extensive literature discussion

- General:
 - directed, weighted, bipartite graph
 - two kinds of notes (Places P, Transitions T)
 - arcs from P to T or from T to P
 - arcs have integer weights
 - non-negative Place weights are called tokens

© 2016 A.W. Krings

Page: 3

CS449/549 Fault-Tolerant Systems Sequence 11

- ◆ A Petri Net is a 5-touple PN={P,T,A,W,M0}
- Place Set $P = \{p_1, p_2, ..., p_m\}$
 - finite set of places
 - condition = place
 - one condition or set of atomic conditions
 - symbol
- Transition Set $T = \{t_1, t_2, ..., t_n\}$
 - finite set of transitions
 - action = transition
 - one action or set of atomic transitions
 - symbol —

- Arc Set $A \subseteq (P \times T) \cup (T \times P)$
 - set of directed arcs
 - edge of graph = arc
 - symbol →
- Weight Function $W = A \rightarrow \{1, 2, 3, ...\}$
 - weights are associated with arcs
- Initial Marking $M_0 = P \rightarrow \{0,1,2,...\}$
 - the initial assignment of tokens to places

© 2016 A.W. Krings

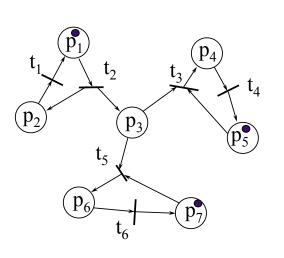
Page: 5

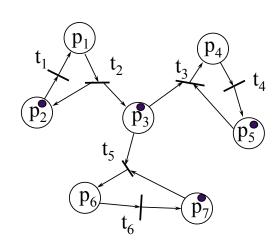
CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

example

- Dynamic Behavior
 - during simulation of a petri net the state of the net may change
 - change of state:
 - » transitions can be enabled
 - » enabled transitions may fire
 - » firing transition changes the marking of the net
 - » the marking is the "snap-shot" of all the tokens

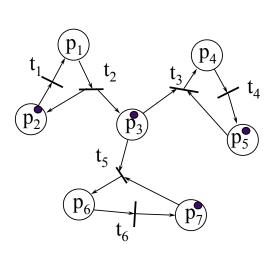

© 2016 A.W. Krings


Page: 7

CS449/549 Fault-Tolerant Systems Sequence 11

- Firing rules
 - A transition T is said to be *enabled* if each input place P is marked with at least W(P,T) tokens
 - » W(P,T) is the weight of the arc from P to T
 - An enabled transition may or may not fire (depending on whether or not the event actually takes place).
 - A firing of an enabled transition T removes W(P,T) tokens from each input place P of T, and adds W(T,P) tokens to each output place P of T
 - » W(T,P) is the weight of the arc from T to P
 - Common misconception: When a transition fires, it does not move tokens
 - i.e. the number of tokens in the system is not necessarily constant

- Example: assume the following initial marking
 - Only one transition is enabled, i.e. t₂

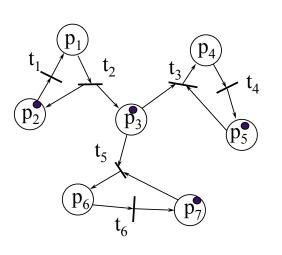

© 2016 A.W. Krings

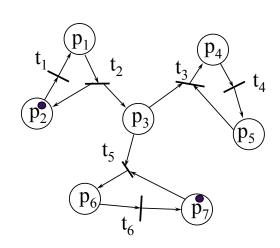
Page: 9

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- Now several transitions are enabled, i.e. $t_1 t_3$ and t_5
- if t₁ fires first

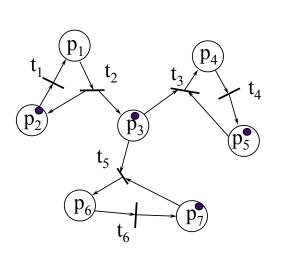



 t_1 t_2 t_3 t_4 t_5 t_5 t_6 t_6

© 2016 A.W. Krings

Page: 10

- if t₃ fires first

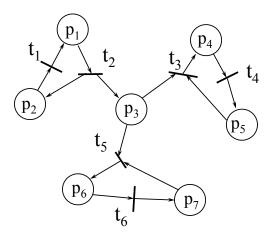

© 2016 A.W. Krings

Page: 11

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets

- if t₅ fires first
- t₃ and t₅ are said to be in conflict



 t_1 t_2 t_3 t_4 t_5 t_5 t_6 t_7

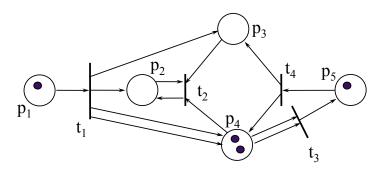
© 2016 A.W. Krings

Page: 12

- what could this Petri net represent?

© 2016 A.W. Krings

Page: 13

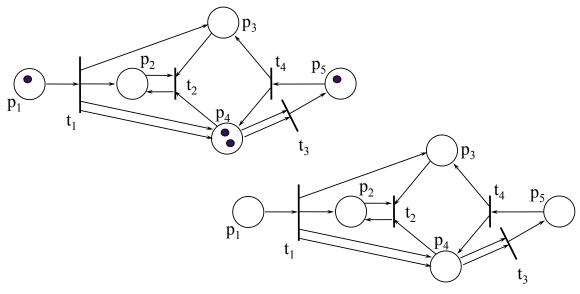

CS449/549 Fault-Tolerant Systems Sequence 11

- Marking: Number and placement of tokens
 - let $m_i = \#$ of tokens in place p_i
 - then marking

$$M = \{m_1, m_2, ..., m_n\}$$

- marking -- system state
- Advantage: economy of model
 - » e.g. assume net with 6 places
 - we limit each place to maximal 1 token
 - then there are 2⁶ possible markings
 - => 64 states
 - thus Petri Nets are a lot smaller than state diagrams, i.e. Markov chains

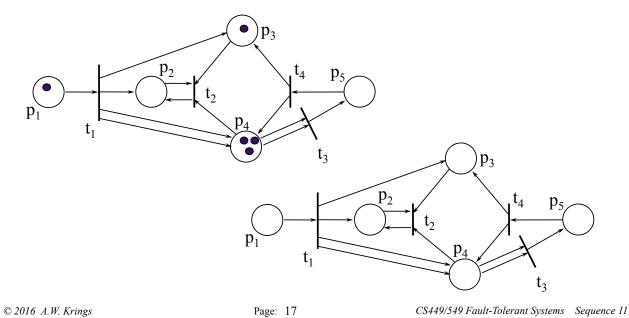
- Firing rules
 - transition 1,3 and 4 are enabled


© 2016 A.W. Krings

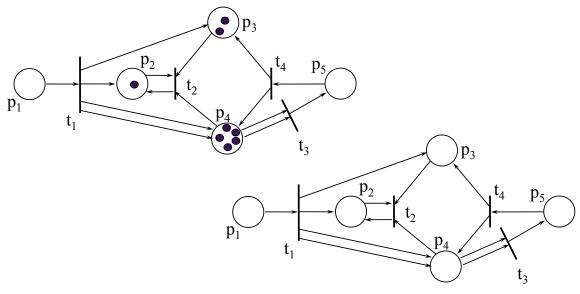
Page: 15

CS449/549 Fault-Tolerant Systems Sequence 11

Petri Nets


- Firing rules
 - transition 4 fires

© 2016 A.W. Krings


Page: 16

- Firing rules
 - transition 1 fires

Petri Nets

- Firing rules
 - transition 3 fires

© 2016 A.W. Krings

Page: 18