Information Redundancy

- Code, codeword, binary code
- Error detection, error correction
- Hamming distance:
- number of bits in which two words differ
- Odd/even parity
- the total number of 1 s is odd/even
- Basic parity approaches
- bit-per-word
- bit-per-byte
- bit-per-chip

Error Detection/Correction

- Let's look at an old principle to error correction
- Hamming Code
- any computer organization book will be a good reference
» e.g. William Stallings' Computer
Organization and Architecture
- rely on check bits to identify whether bit has been changed
- identification of changed bit allows for correction

Overlapped Parity

12	11	10	9	8	7	6	5	4	3	2	1	Bit Position
0	1	0	1	0	1	0	1	0	1	0	1	
0	1	1	0	0	1	1	0	0	1	1	0	
1	0	0	0	0	1	1	1	1	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	
				C4				C3		C2	C1	Check Bit
D8	D7	D6	D5		D4	D3	D2		D1			Data Bit

$$
2^{k}-1 \geq m+k \quad \begin{aligned}
& \mathrm{m}=\text { data bits } \\
& \mathrm{k}=\text { parity bits }
\end{aligned}
$$

Overlapped Parity

Syndrome is derived from comparing, i.e. XOR, transmitted and received/recomputed check bits.
Syndrome has following characteristics (previous example)

- if syndrome contains all 0's
" no error has been detected
- if syndrome contains one and only one bit set to 1
" error has occurred in one of the 4 check bits
- if syndrome contains more than one bit set to 1
" numerical value of the syndrome indicates the position of the data-bit error
" this bit is then inverted for correction

Compute Check

0	1	0	1	0	1	0	1	0	1	0	1	
0	1	1	0	0	1	1	0	0	1	1	0	
1	0	0	0	0	1	1	1	1	0	0	0	
1	1	1	1	1	0	0	0	0	0	0	0	
				C4				C3		C2	C1	Check Bit
D8	D7	D6	D5		D4	D3	D2		D1			Data Bit

$$
\begin{aligned}
& C 1=D 1 \oplus D 2 \oplus D 4 \oplus D 5 \oplus D 7 \\
& C 2=D 1 \oplus D 3 \oplus D 4 \oplus D 6 \oplus D 7 \\
& C 3=D 2 \oplus D 3 \oplus D 4 \oplus D 8 \\
& C 4=D 5 \oplus D 6 \oplus D 7 \oplus D 8
\end{aligned}
$$

Overlapped Parity

- Example
- data = 11100001
- compute check bits:

$$
\begin{aligned}
& C 1=D 1 \oplus D 2 \oplus D 4 \oplus D 5 \oplus D 7 \\
& C 2=D 1 \oplus D 3 \oplus D 4 \oplus D 6 \oplus D 7 \\
& C 3=D 2 \oplus D 3 \oplus D 4 \oplus D 8 \\
& C 4=D 5 \oplus D 6 \oplus D 7 \oplus D 8 \\
& C 1=1 \oplus 0 \oplus 0 \oplus 0 \oplus 1=0 \quad-\quad \text { least significant bit } \\
& C 2=1 \oplus 0 \oplus 0 \oplus 1 \oplus 1=1 \\
& C 3=0 \oplus 0 \oplus 0 \oplus 1 \quad=1 \\
& C 4=0 \oplus 1 \oplus 1 \oplus 1 \quad=1 \quad \quad \text { most significant bit }
\end{aligned}
$$

Overlapped Parity

Example

- data sent is 11100001 and transmitted check bits are 1110
- assume received data is: 01100001
" note that most sig. bit has been corrupted/flipped
- received check bits are: 1110
- recomputed check bits:

$$
\begin{array}{ll}
C 1=1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 & =0 \\
C 2=1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 & =1 \\
C 3=0 \oplus 0 \oplus 0 \oplus 0 & =0 \\
C 4=0 \oplus 1 \oplus 1 \oplus 0 & =0
\end{array}
$$

- Syndrome: 1110 XOR $0010=1100$

Applying Syndrome

12	11	10	9	8	7	6	5	4	3	2	1	Bit Position
0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0												

C4
D8 D7 D6 D5
D4 D3 D2
D1
C2 C1 Check Bit
Data Bit

Syndrome 1100 detects D8 as faulty

m-of-n codes

- All code words are n bits in length and contain exactly $m 1 \mathrm{~s}$
Simple implementation:
- add/append second data word
- select word such that code word contains m 1s
- code is separable
- 100\% overhead

Hamming distance is 2

- e.g. 1st error sets bit, 2nd error resets other bit

Checksum

- Separable code to achieve error detection capability
- Checksum is the sum of the original data
- Single-precision checksum
- overflow problem, i.e. adding n bits modulo 2^{n}
- Double-precision checksum
- uses double precision, i.e. compute $2 n$-bit checksum from n-bit words using modulo- $2^{2 n}$ arithmetic.
- Honeywell checksum
- compose word of double length by concatenating 2 consecutive words
- compute checksum on these double words
- Residue checksum
- like single-precision checksum, but overflow is now fed back as carry

Cyclic codes

- Cyclic Redundancy Checks (CRC)
- Parity bits still subject to burst noise, uses large overhead (potentially) for improvement of 2-4 orders of magnitude in probability of detection.
- CRC is based on a mathematical calculation performed on message. We will use the following terms:
M - message to be sent (k bits)
» F - Frame check sequence (FCS) to be appended to message (n bits)
T - Transmitted message includes both M and F

$$
=>(k+n \text { bits })
$$

G - a $n+1$ bit pattern (called generator) used to calculate F and check T

Cyclic codes

Idea behind CRC

- given a k-bit frame (message)
- transmitter generates a n-bit sequence called frame check sequence (FCS)
- so that resulting frame of size $k+n$ is exactly divisible by some predetermined number
- Multiply M by 2^{n} to shift and add F to padded 0s

$$
T=2^{n} M+F
$$

Cyclic codes

- Dividing $2^{n} M$ by G gives quotient and remainder

$$
\frac{2^{n} M}{G}=Q+\frac{R}{G} \quad \begin{aligned}
& \text { remainder } \\
& \text { is } 1 \text { bit less } \\
& \text { than divisor }
\end{aligned}
$$

then using R as our FCS we get

$$
T=2^{n} M+R
$$

on the receiving end, division by G leads to

$$
\frac{T}{G}=\frac{2^{n} M+R}{G}=Q+\frac{R}{G}+\frac{R}{G}=Q
$$

Note:
$\bmod 2$ addition, no remainder

Cyclic codes

Therefore, if the remainder of dividing the incoming signal by the generator G is zero, no transmission error occurred.

- Assume T + E was received (Note: E is the error)

$$
\frac{T+E}{G}=\frac{T}{G}+\frac{E}{G}
$$

since T / G does not produce a remainder, an error is detected only if E / G produces a non-zero value

Cyclic codes

example, assume generator $G(X)$ has at least 3 terms

- $G(x)$ has three 1-bits
" detects all single bit errors
" detects all double bit errors
" detects odd \#'s of errors if $G(X)$ contains the factor $(X+1)$
» any burst errors $<$ length of FCS
" most larger burst errors
" it has been shown that if all error patterns likely, then the likelihood of a long burst not being detected is $1 / 2^{n}$

Cyclic codes

- What does all of this mean?
- A polynomial view:
" View CRC process with all values expressed as polynomials in a dummy variable X with binary coefficients, where the coefficients correspond to the bits in the number.
- for $M=110011$ we get $M(\mathrm{X})=\mathrm{X}^{5}+\mathrm{X}^{4}+\mathrm{X}$
$+1$
- for $G=11001$ we get $G(\mathrm{X})=\mathrm{X}^{4}+\mathrm{X}^{3}+1$
- Math is still mod 2
* An error $E(X)$ is received and undetected iff it is divisible by $G(\mathrm{X})$

Cyclic codes

- Common CRCs
- CRC-12 $=\mathrm{X}^{12}+\mathrm{X}^{11}+\mathrm{X}^{3}+\mathrm{X}^{2}+\mathrm{X}+1$
- CRC-16 $=X^{16}+X^{15}+X^{2}+1$
- CRC-CCITT $=\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+1$
- CRC-32 $=\mathrm{X}^{32}+\mathrm{X}^{26}+\mathrm{X}^{23}+\mathrm{X}^{22}+\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{11}+$ $X^{10}+X^{8}+X^{7}+X^{5}+X^{4}+X^{2}+X+1$
- Hardware Implementation:

$$
G(X)=1+a_{1} X+a_{2} X^{2}+\cdots+a_{n-1} X^{n-1}+a_{n} X^{n}
$$

