Result Certification

¢ What does one do when applications get large...?
— The results of a large computation 1s returned:
Is that result correct?

>

v

>

v

Are there computational errors?

Has the result been altered by partial
manipulation?

>

AN

Has there been a massive attack?

>

v

>> L]

| (CS448/548 Sequence 22

Result Certification

¢ How do you know whether the results of a large
computation have not been corrupted?

- This sequence 1s based on

» Krings Axel W., Jean-Louis Roch, and Samir Jafar, “Certification
of Large Distributed Computations with Task Dependencies in
Hostile Environments”, IEEE Electro/Information Technology
Conference , (EIT 2005), May 22-25, Lincoln, Nebraska, 2005

» Krings Axel, Jean-Louis Roch, Samir Jafar and Sebastien
Varrette, “A Probabilistic Approach for Task and Result
Certification of Large-scale Distributed Applications in Hostile
Environments”, Proc. European Grid Conference (EGC2005), in
LNCS 3470, Springer Verlag, February 14-16, 2005, Amsterdam,
Netherlands.

» Sarmenta,Luis F.G., Sabotage-ToleranceMechanisms for

Volunteer Computing Systems, Future Generation Computer
Systems, No. 4, Vol. 18, 2002.

2 (CS448/548 Sequence 22

larget Application

¢ Large-Scale Global Computing Systems

¢ Subject Application to Dependability Problems
— Can be addressed in the design

¢ Subject Application to Security Problems

- Requires solutions from the area of survivability, security,
fault-tolerance

3 (CS448/548 Sequence 22

Global Computing Architecture

¢ Large-scale distributed systems (e.g. Grid, P2P)
¢ Transparent allocation of resources

]
[
|

|

user

INTERNET

4 CS448/548 Sequence 22

Typical Application

¢ Computation intensive parallel application
- e.g. Medical (mammography comparison)

Storage grid |
DB1 DB2 DB3 |~ [store Image
A A | o
D1
Y
To analyse [
‘ Y Computing grid
0 i = = = =) |
i ‘
Java Card | -
T Results
D2

5 (CS448/548 Sequence 22

Unbounded Environments

¢ In the Survivability Community our general computing
environment 1s referred to as

Unbounded Environment

- Lack of physical / logical bound
— Lack of global administrative view of the system.

What risks are we subjecting our
applications to?

6 (CS448/548 Sequence 22

Nodes will fail or be compromised!

¢ Two important questions:
- How does one deal with the problem of node
failure?

» Fault-tolerance of “tew’ failures 1s built into
application

- Where 1s the threshold of failures an application
can tolerate?

» Does one know the number of failed nodes or
wrong results?

7 (CS448/548 Sequence 22

Fault Models: Deja vu

¢ Large computations subject to the same spectrum of faults:

Fault
/ \
Benign Malicious
/ \
Symmetric Asymmetric

¢ Fault-Behavior and Assumptions
- Independence of faults
— Common mode faults -> towards arbitrary faults!

¢ Fault Sources
- Trojan, virus, DOS, DDOS, etc.
- How do faults affect the overall system?

8 (CS448/548 Sequence 22

Attacks and their impact

¢ Attacks
- single nodes, difficult to solve with certification strategies
— solutions: e.g. intrusion detection systems (IDS)

¢ Massive Attacks
- affects large number of nodes
- may spread fast (worm, virus)
- may be coordinated (Trojan)

¢ Impact of Attacks

— attacks are likely to be widespread within neighborhood, e.g.
subnet

¢ Focus: massive attacks

- virus, trojan, DoS, etc.
9 (CS448/548 Sequence 22

How does the application survive?
¢ Key is Fault Threshold

¢ Two main aspects

1. Application has to be designed to tolerate a certain
number of faults

- 1mplications of infrastructure size on reliability
- worst case series RBD

- use fault-tolerance algorithms
- e.g. fault-tolerant scheduling

2. One has to detect when fault threshold 1s surpassed.

10 (CS448/548 Sequence 22

Certification Against Attacks

¢ What 1s “Certification” in this context?
- Mainly addressed for independent tasks

¢ Current approaches
— Voting
— Spot-checking
- Blacklisting
— Credibility-based fault-tolerance
— Partial execution on reliable resources (partitioning)
- Re-execution on reliable resources

¢ Certification of Computation

11 (CS448/548 Sequence 22

Majority Voting

¢ Compute each piece of work several times
¢ Decide which result to accept via voting
- example: modified eager scheduling work pool
» m=2, 2-first voting scheme
» expected redundancy:m/(1-f), where f1s fault fraction

"""

' VotingWorkPool ,
i nextUnDoneWork
\ m=2 .{ i
i Done, res=A Done, res=G :
Work —» Work ——p»{ Work — » Work |
0 I 2 ’p |
| v v |
lres| pid |res| pid ||res| pid |[res| pid res | pid res | pid :
Al Pt |B| P2 ||[Q] P4 [H]| P 7| P2 G| p3
i A P3 G P4

source: Sarmenta2002 . CS448/548 Sequence 22

Spot-Checking

¢ Master randomly gives worker a spotter work

— result 1s already known

- 1f worker 1s caught with wrong result:

» master backtracks through all that worker’s results and invalidates
them

» master may also blacklist the exposed worker from future work

¢ Has much lower redundancy than voting
- Redundancy level 1s: 1/(1-g)
- ¢ 1s the Bernoulli probability of being checked

¢ Useful 1f f 1s large, or maximum acceptable error rate 1s
not too small

13 (CS448/548 Sequence 22

Spot-Checking with Blacklisting

¢ Caught saboteurs are blacklisted
- not allowed to return to the worker pool
- assume saboteur receives n work objects (including spotters)
— then average final error rate 1s

sf(1—qs)"
1—f)+ f(1—gqs)"

gscbl(Q7 n, f7 S) — (

— 5 1s sabotage rate of a saboteur
— f 1s the fraction of the original population that were saboteurs
- (1 - gs)" is the probability of a saboteur surviving though » turns

- denominator represents fraction of original worker population
that survive to the end of the batch

— see Samenta 2002

14 (CS448/548 Sequence 22

Credibility-based Fault-Tolerance

¢ Could combine voting and spot-checking

- achieved error rates are orders-of-magnitude smaller

¢ More general: credibility-based fault-tolerance

- compute credibility of each tentative result as conditional
probability that the result 1s correct
» based on voting
» spot-checking
» other factors, e.g., some workers may be more trustworthy

15 (CS448/548 Sequence 22

Partial re-executions

¢ What 1s a reliable resource?

¢ Use partitioning
- execute part of the work on reliable resource
- execute other parts on normal workers

16 (CS448/548 Sequence 22

Execution Model: Definitions and
Assumptions

¢ Dataflow Graph
- G=(,8)

N h¢
V finite set of vertices v @ ?

€ set of edges ¢, vertices v;, W €V

\/ A4
¢ Two kinds of tasks 0
T, Tasks s1 52

in the traditional sense
Dj Data tasks

inputs and outputs

17 (CS448/548 Sequence 22

General Execution Environment

¢ Checkpoint Server: Interface between two environments

Unreliable Application Execution Environment

'.Ea.fl

o ChkptEvent(5)
Ml . CkpEven)

Distributed Checkpoint Based on Data—Flow

18

o A —

Reliable Resources
(Verifier)

—— e ——— e —— o —— - ——— e ——

| 2] | L1 L1
|'= |||| |==* |||| [-=- ||||

L)) [

11 11 11
I=|||I I=|||] I= |||I

I
I
I
|
|
I
I
I
I
Stable & Secure Resources :
|
I
I
|
I
I
I
I
|
I

Checkpoint Server
(eventually distributed)

(CS448/548 Sequence 22

Global Computing Platform (GCP)

¢ GCP includes workers, checkpoint server and verifiers

Workers) user

re -:I : ‘ o / ‘
\ Checkpoint Verifiers
Internet N Server
J ol
s | NOT w—
I) ~—
, , : 'u] v 'r'" I |
= e AT ' J
= 11} = 11} 4) 15)
| P
|]]
= =1

19 (CS448/548 Sequence 22

Definitions

¢ Executions in unreliable environment
E execution of workload represented by G

i(TE) iputto T in execution £
o(T E) output of T in execution £

¢ Executions 1n reliable environment: Verifier
execution of workload G on Verifier

=3

A

l input to 7 in execution £

~

E)
6(T.E) output of T in execution £
o(

E) output of 7 with input from £ executing on verifier

Note: notations 6(T,E) and 6(T,E) differ!

¢ IfE =FE thenE is said to be “correct”
otherwise E 1s said to have “failed”

20

(CS448/548 Sequence 22

Probabilistic Certification

¢ Monte Carlo certification:

- arandomized algorithm that
1. takes as input £ and an arbitrary e, 0 <¢ <]

». delivers
® cither CORRECT
® or FAILED, together with a proof that £ has failed

- certification 1s with error € 1f the probability of

answer CORRECT, when E has actually failed, 1s
less than or equal to €.

21 (CS448/548 Sequence 22

Probabilistic Certification

¢ What does the certification really mean?
~ what is the real interpretation of £ = £
~ connection between £ = E and massive attack

— use E = FE as a “tool” to determine 1f a massive attack has
occurred

¢ Monte Carlo certification against massive attacks
— number of tasks actually failed/attacked n

— consider two scenarios
» I’ZF — O

» N 1s large => massive attack

¢ Attack Ratio ¢ n,= [nq-‘ <N

22 (CS448/548 Sequence 22

Monte Carlo Test

¢ Algorithm MCT

1. Uniformly select one task 7'in G
we know input i(7,E) and output o(T, E) of T from checkpoint server

2. Re-execute 7T on verifier, using i(7,E) as inputs, to get output
O(TE)
If o(T.E) # 6(T.E) return FAILED

- Return CORRECT

¢ Assume all tasks in G are independent
1. we always have i(T.E) = i(T.E)

23 (CS448/548 Sequence 22

Certification of Independent Tasks

¢ Main Result

— Let E be an execution with n independent tasks and assume that E is
either correct or massively attacked with ratio q. For a given €, the

number of independent executions of algorithm MCT necessary to
achieve a certification of E with probability of error less than or

equal to € is
N = [loge w
log(1-¢)

— Prob. that MCT selects a non-forged task is 72 — g
n

<l-g

- N independent applications of MCT resultsin € < (1 - q)N

24 (CS448/548 Sequence 22

Certification of Independent Tasks

¢ Relationship between attack ratio and N

300 -

—o—c=0.001
250 —a—e=().0001]
—a—e=().00001
200 - —o—¢=(.000001
N 150 -
1040 -
50 A
——
0 '
0.05 0.1 0.15 0.2 0.25 0.3

25 (CS448/548 Sequence 22

Certification of Independent Tasks

¢ Relationship between certification error and N

——q=3%
300 - —a—q=10%
——q=13%
250 ,.
—— q::.()oo
200 4
N
150
100 4
50 -
0

1.LE-01 1.E-02 1.E-03 1E-04 1E-05 1E-06 1E-07
¢ (In log scale)

26 (CS448/548 Sequence 22

Certification with task dependencies

¢ What changes when one considers task
dependance?

27 (CS448/548 Sequence 22

Certification and Task Dependencies

¢ What does a re-execution really tell us w.r.t. the result?
- One can only talk about outputs of tasks, not tasks!

- If o(LE) # o(TE) we know that an error has occurred

- If o(TE) = o(E) we cannot say much at all!

» for independent tasks this indicated a good task/result

» what do we know about the inputs?
® in the presence of error propagation -- not much!

» if the verifier uses (T,E) then o(Z,E) = 6(TF) indicates a good
result
but we don’t have E, (would require total re-execution on verifier)

28 (CS448/548 Sequence 22

Certification and Task Dependencies

¢ The concept of “Initiator”

- o(LE) = 6(TE) 1s only useful 1if we know that the inputs are
correct

» this implies that 7" has no forged predecessors

— Definition:

An initiator 1s a falsifying task that has no falsifying
predecessors

- Worst case assumption 1s very conservative

» one still might detect a falsified non-initiator
» but there 1s not guarantee

29 (CS448/548 Sequence 22

Certification and Task Dependencies

¢ C(ertification 1s now based on initiators

¢ Lemma 2

— The probability that MCT return FAILED is at least n, /n and the
probability it returns CORRECT is < I1-n;/n

¢ Lemma 3

— Let E be an execution of tasks with dependencies and assume that E is
either correct or massively attacked with ration q. For a given €, the
number of independent executions of algorithm MCT necessary to

achieve a certification of E with probability of error less than or
equal to € is

loge
log(1 - 1)
n

30 (CS448/548 Sequence 22

Certification and Task Dependencies

GX(T) predecessor graph of T

V a set of tasks in G

G=(V) predecessor graph of all tasks in V'
k<ng be the number of falsified tasks assumed
I(F) set of all initiators

¢ Minimum Number of Initiators

Y, (k) =min |G=(V)NI(F)|
¢ Minimal Initiator Ratio

Yy (k)
1G=(V) |

31 (CS448/548 Sequence 22

FV (k) =

Certification and Task Dependencies

¢ The impact of graph G

- Knowing the graph, an attacker may attempt to minimize the
visibility of even a massive attack with ration g.

— What is the number of initiators one might have to expect in a
graph?

» Given height £ (the length of the critical path) and
maximum out- degree d of a graph G, the minimum number
of initiators 1s

- 4
Vo (np) =~ /\

1-d"
1-d

32 (CS448/548 Sequence 22

Extended Monte Carlo Test

¢ Algorithm EMCT

1. Uniformly select one task 7'in G

2. Re-execute all 7} in GX(T), which have not been verified yet, with
input (7 E) on a verifier and return FAILED if for any 7, we have

o(T,E) # o(T,E)
3. Return CORRECT

1. Behavior
1. disadvantage: the entire predecessor graph needs to be re-executed

2. however: the cost depends on the graph
1. luckily our application graphs are mainly trees

33 (CS448/548 Sequence 22

Analysis of EMCT

¢ Probability of error for single execution:

— WwWorst case

» forged tasks are distributed to minimize the number of 7 whose GX(T)
contain falsified tasks

» this 1s the case when the attack i1s biased towards leaf nodes

— error probability e, <1/ -gq

34 (CS448/548 Sequence 22

Analysis of EMCT

¢ What 1s the cost (number of verifications) of a single
Invocation:

- exact number of verifications 1s known only at run-time
» depends on which T'is selected

C=|GXT)

- expected number of verifications:
» average number of tasks in a predecessor graph, over all 7, in G.

2,/

n

C =

35 (CS448/548 Sequence 22

Analysis of EMCT

¢ Results of independent tasks still hold,

— but N hides the cost of verification

» independent tasks: C =1
» dependent tasks: C = |GX(T)|

350 -

300 4 ——q=3%
250 - —a—¢=0.0001
—a—e=0.00001 250 -
200 - —o—¢=0.000001
200 4
o N
N 150 150
100 4 100 -
50 - 50 4
O T T T T T] () L L] L] L] 1
0.05 0.1 0.15 0.2 0.25 0.3 1.LE-01 1.E-02 1.E-03 1.E-04 1E-05 1E-06 1E-07

36

¢ (In log scale)

(CS448/548 Sequence 22

Results for MCT and EMTC

¢ Considered
- General graphs

— Out-trees (application domain based on out/in-trees)

Algorithm MCT EMCT
Number of effective initiators [—L—] Ng
1—-d
(1—-d
Probability of error 1 — I;d 1—gq
Verification cost: general G 1 O(n)
Verification cost: (G is out-tree 1 h — loga(ny)
Ave. # effective initiators, G is out-tree|[— TR +nf+ TR 1 Ng
((1—d)(1—a+1)

37

(CS448/548 Sequence 22

Reducing the cost of verification

For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of G(T)
2. Verification with fixed number of tasks

38 (CS448/548 Sequence 22

Relationship between quantities

¢ (@Given a subset V of tasks 1in G.

What are the relationships between
Yy(k), Yg(k) and n; with respect to k = n_ or k = nj?

By definition
q<np/n andthusn, <ng

also

n,<ng

39 (CS448/548 Sequence 22

Relationship between quantities
¢ With respect to n, we always have
V() = Yg(np) < ny<ng

- But where does n_ fit into this inequality?
- The only certain relationship is n, < np

¢ With respect to n, we always have

Yin,) =vgn,) =n, =< ng

~ But where does #, fit into this inequality?
- The only certain relationship is yg(n,) < n; < ng

40 (CS448/548 Sequence 22

Relationship between quantities

¢ With respect to n, < n we can compare directly

YV(nq) = YV(nF)
Yo(n,) = Yg(ng)

Thus

I V(”lq) =TI y(np)
['g(n) =T 5(np)

41 (CS448/548 Sequence 22

Verifying with fractions of GXT)

¢ We will now modify algorithm EMCT so that only a fraction
of tasks 1n the predecessors are verified.

42 (CS448/548 Sequence 22

Verifying with fractions of GXT)
¢ Algorithm EMCTo(E)

1. Uniformly choose one task 7'in G.

2. Uniformly select n, = [a|G=(T)|] tasks in
G=(T) and let this set be denoted by A. If for any
T’; € A, that has not been verified yet, re-execution
on a verifier results in 6(1;, F¥) # o(1}, F)) then
return FAILED.

3. Return CORRECT.

43 (CS448/548 Sequence 22

Verifying with fractions of GXT)

¢ For Algorithm EMCTo(E)

Lemmal Let 1" be a task randomly chosen by
EMCT,(E). Then the probability of error, e, when
EMCT,(E) returns CORRECT is given by

. < (1 —qal'r(n,)) for 0<a<1-—Tp(n,)
“ = (1—q) otherwise.

44 (CS448/548 Sequence 22

Verifying with fractions of GXT)
¢ For Algorithm EMCTo(E)

Theorem 1 Let E be an execution with dependencies
that is either correct or massively attacked with ratio q.
Given e and 0 < o < 1, N independent invocations
of Algorithm EMCT, (E) provide a certification with
error probability

(1—qalg(ny) for0<a<1-—Tp(n,)
€ S B N , .
(1—q) otherwise.

45 (CS448/548 Sequence 22

Verifying fixed numbers of tasks

¢ We will now modify algorithm EMCT so that only a fixed
number of tasks in the predecessors are verified.

- We limit our investigations to unity, 1.e. one task is verified.

46 (CS448/548 Sequence 22

Verifying fixed numbers of tasks

¢ Algorithm EMCT!(E)

1. Uniformly choose one task 7'in G.

2. Uniformly select a single 7 in G=(T). If re-

execution of 7; on a verifier results in o(1;, E') #
o(1;, E') then return FAILED.

3. Return CORRECT.

47 (CS448/548 Sequence 22

Verifying fixed numbers of tasks

¢ For Algorithm EMCT!(FE)

Lemma?2 Let 1" be a task randomly chosen by
EMCTY(E) and let V = G=(T). Then the probabil-
ity of error, ey, when EMCT! (E) returns CORRECT
is given by

e; < 1-— %FT(nF) <1-—ql'r(ny)

48 (CS448/548 Sequence 22

Verifying fixed numbers of tasks

¢ For Algorithm EMCT!(FE)

Theorem 2 Let E be an execution with dependencies
that is either correct or massively attacked with ratio q.
Given € then N independent invocations of Algorithm
EMCTY(E) provide a certification with error proba-
bility

e < (1- QFG(nq))N-

49 (CS448/548 Sequence 22

The cost of certification

¢ A balance between N and C

¢ Monte Carlo certification for a given €:
1. apriori convergence
- determine up front how many times one has to verify
- one does not know which tasks are selected
2. run-time convergence
- run until certain € is achieved
- take advantage of knowledge about task selected

3. for general graphs
4. for special graphs (e.g. out-trees)

50 (CS448/548 Sequence 22

Results for pathological cases

¢ Number of effective 1nitiators
- this 1s the # of initiators as perceived by the algorithm
- e.g. for EMCT an iitiator in G<(7) 1s always found, 1f it exists

MCT(E)[7] | EMCT(E) 7] EMCT,(E) EMCT(E)
of effective initiators [(1'_7“#)} ng ngol'r(n,) orng, ngl'r(ng)
1—d
Feeriay
Probability of error 1— 1—q 1 —qal'p(ng)orl —gq 1 —qlp(n,)
. , log e log e log e log e log e
A priort convergence L — log (1-) log(1-gaTc(ng) ' log(l—q) | log(I—alc(ng))
1—d
log(1————"2—)
f—h—gl_ﬁz)
(. a priori — q qal'¢(n,) or g qL'a(ng)
fﬁh—)]
(. TUN-time —" q gal'r(n,) or g qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)][] 1
Max. cost (out-tree) 1 h ah
51 (CS448/548 Sequence 22

Results for pathological cases

¢ Probability of error induced by one invocation
- derived for each algorithm

MCT(E)[7] | EMCT(E) [7] EMCT,(E) EMCT(E)
of effective initiators [ﬁ] ng ngol'r(n,) orng, ngl'r(ng)
1—d
Feeriay
Probability of error 1— 1 —gq 1 —qgal'r(ng)orl —gq 1 —qTr(ny,)
A priori convergence log e log e log ¢ r —1ogc log e
p) r 1f§ 1 log(1—gq) log(1—gal'g(ng)) log(1—q) log(1—qCc(nq))
1—d
log(1————"/—)
f—h—gl_i)
qe apriori — q qal'¢(n,) or g qL'a(ng)
fﬁfﬁW
(. TUN-time — q gal'r(n,) or ¢ qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)][] 1
Max. cost (out-tree) 1 h ah
52 (CS448/548 Sequence 22

Results for pathological cases

¢ A priori convergence (NN 1s determined a priori)
- cannot take advantage of run-time knowledge

- has to use I';(n,) rather than I'(n,) N > { loge
- g, 1s the effective attack ratio log(1-4,)
MCT(E)[7] | EMCT(E) 7] EMCT,(E) EMCT(E)
of effective initiators [(1'_1—'3;1)} ng ngol'r(n,) orng, ngl'r(ng)
1—d
Feeriay
Probability of error I — 1—q 1 —qal'p(ng)orl —gq 1 —qlp(n,)
. , log e log e log e log e log e
A priori convergence r 121; 1 log(1—q) log(1—gal'g(ng)) log(1—gq) log(1—qT'c(ng))
log(1-———"2)
Feeriay
(. a priori il;—) q qal'¢(n,) or g qL'a(ng)
fﬁj]
. TUn-time 1_7_1_ ' q gal'r(n,) or g qU'r(ng)
Verification cost (exact) 1 G=(T)| [a|G=(T)] 1
Max. cost (out-tree) 1 h ah
53 (CS448/548 Sequence 22

Results for pathological cases

¢ Run-time convergence (/N is determined at run-time)
takes advantage of run-time knowledge
initial verification ¢, =1 - g,

~ each verification ¢.,=¢_,(1-gq,) N = { loge
- log(1 -
~ untile €. <€ el-q,.)
MCT(E)[7] | EMCT(E) 7] EMCT,(E) EMCT(E)
of effective initiators [(1'_1#)} ng ngol'r(n,) orng, ngl'r(ng)
1—d
Feeriay
Probability of error I — 1—q 1 —qal'p(ng)orl —gq 1 —qlp(n,)
. , log e log e log e log e log e
A prioti convergence T — log(1—q) log(T—gaTG(ng) O Tog(1-q) | Tog(1—alc(ny))
1—d
log(1- 1270)
f—h—gl_fj’l)
{e a priori —- q qal'¢(n,) or g qL'a(ng)
fﬁj]
. TUn-time 1_7_1_ ' q gal'r(n,) or g qU'r(ng)
Verification cost (exact) 1 G=(1)] [a|G=(T)]] 1
Max. cost (out-tree) 1 h ah
54 CS448/548 Sequence 22

Results for pathological cases

¢ Verification cost
- per invocation of the algorithm

- special case: out-tree

MCT(E)[7] | EMCT(E) [7] EMCT,(E) EMCT(E)
of effective initiators [ﬁ] ng ngol'r(n,) orn, ngl'r(ng)
1—d
Feeriay
Probability of error 1— 1 —gq 1 —qgal'r(ng)orl —gq 1 —qlp(n,)
A priori convergence log e log e log € log e log e
p o [1fg 1 log(1—gq) log(1—gal'g(ng)) log(1l—gq) log(1—¢Ta(ng))
1—=d
log(1— —
f—h—gl_i)
qe apriori — q qal'¢(n,) or g qL'a(ng)
fﬁfﬁW
e TUN-time — q gal'r(n,) or ¢ qI'r(ng)
Verification cost (exact) 1 |G=(T)| [a|G=(T)][] 1
Max. cost (out-tree) 1 h ah
55 (CS448/548 Sequence 22

Conclusions

¢ Certification of large distributed applications

- hostile environments with no assumptions on fault model

¢ Considered task dependencies

- tasks or data may be manipulated

- allows for error propagation (much more difficult than independent
case)

- very difficult to speculate on the behavior of a falsified task
¢ Several probabilistic certification algorithms were introduced

- based on re-execution on verifier (reliable resource)
- 1nputs available from dataflow checkpoints

¢ Certification:
- very low probability of error can be achieved
- number of tasks to verify is relatively small, depending on graph

- relationship between attack rate and probability of error
56 (CS448/548 Sequence 22

