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Survivability Quantification
 This section discusses an approach to eliminate the fail-rate 

in the determination of survivability.
 Source of presentation:

– A General Framework for Network Survivability Quantification, 
– by Yun Liu and Kishor S. Trivedi, 
– in Proceedings of the 12th GI/ITG Conference on Measuring, 

Modelling and Evaluation of Computer and Communication Systems 
(MMB) together with 3rd Polish-German Teletraffic Symposium 
(PGTS), Dresden, Germany, September 2004. 

 Application is telecommunication switching system
 The material of the slides are directly drawn from the paper
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Survivability Quantification
 Pure Performance Markov Model

– n trunks (channels) with an infinite caller population
– call arrival process is assumed to be Poisson with rate λ
– exponentially distributed holding times with rate µ
– Markov chain shows i ongoing calls presented in state i
– what does it mean to be in state n: system handling n calls, but blocks 

for all newly arriving calls
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25, λ = 5s−1, and µ = 0.3s−1 in the discussion of numerical results.
In practice, all trunks are subject to failure due to various reasons such as hard-

ware/software faults, human errors in systemmaintenance and repair, and impairment/damage
from adverse environments. For the ease of illustration, we assume the failure and re-
pair times of each trunk are exponentially distributed with rates γ and τ , respectively.
Assume that a single repair facility is shared by all trunks in the system. Then, the pure
availability model of the system is also a homogeneous CTMC as shown in Figure 1(b),
where state i indicates that there are i nonfailed trunks in the system [13]. In the follow-
ing, parameters are fixed at n = 25, γ = 0.002s−1, and τ = 0.1s−1 in the discussion of
numerical results.
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Figure 1: The performance, availability, and composite Markov models

Combining the performance and availability model, we can construct the composite
performance–availability model as shown in Figure 1(c), where state (i, j) indicates that
there are i nonfailed trunks in the system and j of them are carrying ongoing calls [13].
The steady state and transient probabilities of the performance, the availability, and the
composite models can be either solved in closed form or through the use of the well
known software packages such as SHARPE (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator) developed by researchers at Duke university [11].

3.2 Performance, Availability, and Performability Quantification
We present the calculation and results of performance, availability, and performability
measures in this section to show the difference and connection between these traditional
measures and the survivability measures.

Performance: Suppose the blocking probability Pbk is the performance measure of
interest in our example. The steady state Pbk can be computed from the pure perfor-
mance model as Pbk = πP

n . The steady state probability πP
j of state j in the pure

performance model can be obtained from the following closed form solution

πP
j =

(λ
µ)j/j!∑n

k=0(
λ
µ)k/k!

. (1)
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Survivability Quantification
 Performance 

– What is the measure of performance?
– Blocking probability  Pbk 

» the probability that all n channels are occupied
» consider steady state probability of being in state j

» then blocking probability is
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25, λ = 5s−1, and µ = 0.3s−1 in the discussion of numerical results.
In practice, all trunks are subject to failure due to various reasons such as hard-

ware/software faults, human errors in systemmaintenance and repair, and impairment/damage
from adverse environments. For the ease of illustration, we assume the failure and re-
pair times of each trunk are exponentially distributed with rates γ and τ , respectively.
Assume that a single repair facility is shared by all trunks in the system. Then, the pure
availability model of the system is also a homogeneous CTMC as shown in Figure 1(b),
where state i indicates that there are i nonfailed trunks in the system [13]. In the follow-
ing, parameters are fixed at n = 25, γ = 0.002s−1, and τ = 0.1s−1 in the discussion of
numerical results.
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Combining the performance and availability model, we can construct the composite
performance–availability model as shown in Figure 1(c), where state (i, j) indicates that
there are i nonfailed trunks in the system and j of them are carrying ongoing calls [13].
The steady state and transient probabilities of the performance, the availability, and the
composite models can be either solved in closed form or through the use of the well
known software packages such as SHARPE (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator) developed by researchers at Duke university [11].

3.2 Performance, Availability, and Performability Quantification
We present the calculation and results of performance, availability, and performability
measures in this section to show the difference and connection between these traditional
measures and the survivability measures.

Performance: Suppose the blocking probability Pbk is the performance measure of
interest in our example. The steady state Pbk can be computed from the pure perfor-
mance model as Pbk = πP

n . The steady state probability πP
j of state j in the pure

performance model can be obtained from the following closed form solution

πP
j =

(λ
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λ
µ)k/k!
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25, λ = 5s−1, and µ = 0.3s−1 in the discussion of numerical results.
In practice, all trunks are subject to failure due to various reasons such as hard-

ware/software faults, human errors in systemmaintenance and repair, and impairment/damage
from adverse environments. For the ease of illustration, we assume the failure and re-
pair times of each trunk are exponentially distributed with rates γ and τ , respectively.
Assume that a single repair facility is shared by all trunks in the system. Then, the pure
availability model of the system is also a homogeneous CTMC as shown in Figure 1(b),
where state i indicates that there are i nonfailed trunks in the system [13]. In the follow-
ing, parameters are fixed at n = 25, γ = 0.002s−1, and τ = 0.1s−1 in the discussion of
numerical results.
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Combining the performance and availability model, we can construct the composite
performance–availability model as shown in Figure 1(c), where state (i, j) indicates that
there are i nonfailed trunks in the system and j of them are carrying ongoing calls [13].
The steady state and transient probabilities of the performance, the availability, and the
composite models can be either solved in closed form or through the use of the well
known software packages such as SHARPE (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator) developed by researchers at Duke university [11].

3.2 Performance, Availability, and Performability Quantification
We present the calculation and results of performance, availability, and performability
measures in this section to show the difference and connection between these traditional
measures and the survivability measures.

Performance: Suppose the blocking probability Pbk is the performance measure of
interest in our example. The steady state Pbk can be computed from the pure perfor-
mance model as Pbk = πP

n . The steady state probability πP
j of state j in the pure

performance model can be obtained from the following closed form solution

πP
j =

(λ
µ)j/j!∑n

k=0(
λ
µ)k/k!
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Survivability Quantification
 Pure Availability Markov Model

– n trunks (channels) with an infinite caller population
– failure rate γ
– repair rate τ
– state i indicates that there are i non-faulty channels in the system
– what does it mean to be in state 0: system is unavailable
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25, λ = 5s−1, and µ = 0.3s−1 in the discussion of numerical results.
In practice, all trunks are subject to failure due to various reasons such as hard-

ware/software faults, human errors in systemmaintenance and repair, and impairment/damage
from adverse environments. For the ease of illustration, we assume the failure and re-
pair times of each trunk are exponentially distributed with rates γ and τ , respectively.
Assume that a single repair facility is shared by all trunks in the system. Then, the pure
availability model of the system is also a homogeneous CTMC as shown in Figure 1(b),
where state i indicates that there are i nonfailed trunks in the system [13]. In the follow-
ing, parameters are fixed at n = 25, γ = 0.002s−1, and τ = 0.1s−1 in the discussion of
numerical results.
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Combining the performance and availability model, we can construct the composite
performance–availability model as shown in Figure 1(c), where state (i, j) indicates that
there are i nonfailed trunks in the system and j of them are carrying ongoing calls [13].
The steady state and transient probabilities of the performance, the availability, and the
composite models can be either solved in closed form or through the use of the well
known software packages such as SHARPE (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator) developed by researchers at Duke university [11].

3.2 Performance, Availability, and Performability Quantification
We present the calculation and results of performance, availability, and performability
measures in this section to show the difference and connection between these traditional
measures and the survivability measures.

Performance: Suppose the blocking probability Pbk is the performance measure of
interest in our example. The steady state Pbk can be computed from the pure perfor-
mance model as Pbk = πP

n . The steady state probability πP
j of state j in the pure

performance model can be obtained from the following closed form solution

πP
j =

(λ
µ)j/j!∑n

k=0(
λ
µ)k/k!
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Survivability Quantification
 Availability 

– What is the measure of availability? 
– Steady state probability of state i in pure availability model:

– probability of all channels down is 
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With the parameters given in Section 3.1, the numerical result is Pbk = 0.013376.
Availability: The steady state availability PA can be computed from the pure avail-

ability model as PA = πA
0 . Similar to Equation (1), the steady state probability πA

i of
state i in the pure availability model can be obtained from the following formula

πA
i =

( τ
γ )i/i!∑n

k=0(
τ
γ )k/k!

(2)

With the parameters given in Section 3.1, the result is PA = 1 − 2.6935 × 10−18.
Performability: The blocking probability P

′

bk is a performability measure since fail-
ure/repair activities are considered. The steady stateP

′

bk is computed asP
′

bk =
∑n

k=0 πC
k, k

where πC
k, k is the steady state probability of state (k, k) in the composite model. With

the parameters given in Section 3.1, the result is P
′

bk = 0.020178.

3.3 Survivability Quantification

Following Definition 1, the operating environment E is presented in the second para-
graph of Section 3.1. Service specification R (Rn, ..., Ri, ..., R0) is determined by the
number of available trunks i (i = n, n − 1, ..., 0) in the system. In the finite-state ma-
chine (FSM) each state is associated with one of R and the initial state s0 corresponds to
Rn. The FSM can be derived from the availability model since the change of customer
values over time or different operating environments is not considered. Then, P is the
probability distribution of all FSM states, i.e., πA

i in Equation (2).
To get the transition matrix T , the transition probability from state i to state i + 1

needs to be computed. For i = 1, 2, ..., n − 1, each state Ri has one transition going to
i−1 with rate τ and one transition going to i+1 with rate iγ. The transition probability
is τ

iγ+τ for the former case and
iγ

iγ+τ for the latter.
The numerical results are shown in Figure 2 where the number below each state

indicates the state probability in the setP . Note that the composite model is not explicitly
needed in this definition and no transient analysis is mentioned.
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Figure 2: Survivability specification based on Definition 1

Following definition 2, resource N represents the number of available trunks in the
system, which is n before any failure happens. The survivability measures are also
obtained from the availability model since no performance issue is addressed in this
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With the parameters given in Section 3.1, the numerical result is Pbk = 0.013376.
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′
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graph of Section 3.1. Service specification R (Rn, ..., Ri, ..., R0) is determined by the
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obtained from the availability model since no performance issue is addressed in this



CS448/548 Sequence 21

Composite Markov Model
State (i,j) indicates that there are i non-failed channels in the system and j of them are 

carrying ongoing calls

6
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25, λ = 5s−1, and µ = 0.3s−1 in the discussion of numerical results.
In practice, all trunks are subject to failure due to various reasons such as hard-

ware/software faults, human errors in systemmaintenance and repair, and impairment/damage
from adverse environments. For the ease of illustration, we assume the failure and re-
pair times of each trunk are exponentially distributed with rates γ and τ , respectively.
Assume that a single repair facility is shared by all trunks in the system. Then, the pure
availability model of the system is also a homogeneous CTMC as shown in Figure 1(b),
where state i indicates that there are i nonfailed trunks in the system [13]. In the follow-
ing, parameters are fixed at n = 25, γ = 0.002s−1, and τ = 0.1s−1 in the discussion of
numerical results.
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Combining the performance and availability model, we can construct the composite
performance–availability model as shown in Figure 1(c), where state (i, j) indicates that
there are i nonfailed trunks in the system and j of them are carrying ongoing calls [13].
The steady state and transient probabilities of the performance, the availability, and the
composite models can be either solved in closed form or through the use of the well
known software packages such as SHARPE (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator) developed by researchers at Duke university [11].

3.2 Performance, Availability, and Performability Quantification
We present the calculation and results of performance, availability, and performability
measures in this section to show the difference and connection between these traditional
measures and the survivability measures.

Performance: Suppose the blocking probability Pbk is the performance measure of
interest in our example. The steady state Pbk can be computed from the pure perfor-
mance model as Pbk = πP

n . The steady state probability πP
j of state j in the pure

performance model can be obtained from the following closed form solution

πP
j =

(λ
µ)j/j!∑n

k=0(
λ
µ)k/k!

. (1)
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Survivability Quantification
 Performability 

– What is the measure of performance in this combined model?
– Blocking probability  

» the probability that all n channels are occupied in any “row” of the 
chain

» this is the diagonal in the 2-dimensional chain
» let the steady state probability of state (k,k) be denoted by

» then
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With the parameters given in Section 3.1, the numerical result is Pbk = 0.013376.
Availability: The steady state availability PA can be computed from the pure avail-

ability model as PA = πA
0 . Similar to Equation (1), the steady state probability πA

i of
state i in the pure availability model can be obtained from the following formula

πA
i =

( τ
γ )i/i!∑n

k=0(
τ
γ )k/k!

(2)

With the parameters given in Section 3.1, the result is PA = 1 − 2.6935 × 10−18.
Performability: The blocking probability P

′

bk is a performability measure since fail-
ure/repair activities are considered. The steady stateP

′

bk is computed asP
′

bk =
∑n

k=0 πC
k, k

where πC
k, k is the steady state probability of state (k, k) in the composite model. With

the parameters given in Section 3.1, the result is P
′

bk = 0.020178.

3.3 Survivability Quantification

Following Definition 1, the operating environment E is presented in the second para-
graph of Section 3.1. Service specification R (Rn, ..., Ri, ..., R0) is determined by the
number of available trunks i (i = n, n − 1, ..., 0) in the system. In the finite-state ma-
chine (FSM) each state is associated with one of R and the initial state s0 corresponds to
Rn. The FSM can be derived from the availability model since the change of customer
values over time or different operating environments is not considered. Then, P is the
probability distribution of all FSM states, i.e., πA

i in Equation (2).
To get the transition matrix T , the transition probability from state i to state i + 1

needs to be computed. For i = 1, 2, ..., n − 1, each state Ri has one transition going to
i−1 with rate τ and one transition going to i+1 with rate iγ. The transition probability
is τ

iγ+τ for the former case and
iγ

iγ+τ for the latter.
The numerical results are shown in Figure 2 where the number below each state

indicates the state probability in the setP . Note that the composite model is not explicitly
needed in this definition and no transient analysis is mentioned.
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Figure 2: Survivability specification based on Definition 1

Following definition 2, resource N represents the number of available trunks in the
system, which is n before any failure happens. The survivability measures are also
obtained from the availability model since no performance issue is addressed in this
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With the parameters given in Section 3.1, the numerical result is Pbk = 0.013376.
Availability: The steady state availability PA can be computed from the pure avail-

ability model as PA = πA
0 . Similar to Equation (1), the steady state probability πA

i of
state i in the pure availability model can be obtained from the following formula

πA
i =

( τ
γ )i/i!∑n

k=0(
τ
γ )k/k!

(2)

With the parameters given in Section 3.1, the result is PA = 1 − 2.6935 × 10−18.
Performability: The blocking probability P

′

bk is a performability measure since fail-
ure/repair activities are considered. The steady stateP

′

bk is computed asP
′
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where πC
k, k is the steady state probability of state (k, k) in the composite model. With

the parameters given in Section 3.1, the result is P
′

bk = 0.020178.
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Following Definition 1, the operating environment E is presented in the second para-
graph of Section 3.1. Service specification R (Rn, ..., Ri, ..., R0) is determined by the
number of available trunks i (i = n, n − 1, ..., 0) in the system. In the finite-state ma-
chine (FSM) each state is associated with one of R and the initial state s0 corresponds to
Rn. The FSM can be derived from the availability model since the change of customer
values over time or different operating environments is not considered. Then, P is the
probability distribution of all FSM states, i.e., πA

i in Equation (2).
To get the transition matrix T , the transition probability from state i to state i + 1

needs to be computed. For i = 1, 2, ..., n − 1, each state Ri has one transition going to
i−1 with rate τ and one transition going to i+1 with rate iγ. The transition probability
is τ

iγ+τ for the former case and
iγ

iγ+τ for the latter.
The numerical results are shown in Figure 2 where the number below each state

indicates the state probability in the setP . Note that the composite model is not explicitly
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Following definition 2, resource N represents the number of available trunks in the
system, which is n before any failure happens. The survivability measures are also
obtained from the availability model since no performance issue is addressed in this
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With the parameters given in Section 3.1, the numerical result is Pbk = 0.013376.
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graph of Section 3.1. Service specification R (Rn, ..., Ri, ..., R0) is determined by the
number of available trunks i (i = n, n − 1, ..., 0) in the system. In the finite-state ma-
chine (FSM) each state is associated with one of R and the initial state s0 corresponds to
Rn. The FSM can be derived from the availability model since the change of customer
values over time or different operating environments is not considered. Then, P is the
probability distribution of all FSM states, i.e., πA

i in Equation (2).
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i−1 with rate τ and one transition going to i+1 with rate iγ. The transition probability
is τ

iγ+τ for the former case and
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The numerical results are shown in Figure 2 where the number below each state

indicates the state probability in the setP . Note that the composite model is not explicitly
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Following definition 2, resource N represents the number of available trunks in the
system, which is n before any failure happens. The survivability measures are also
obtained from the availability model since no performance issue is addressed in this
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Survivability Quantification
 Survivability definition of Knight et.al. 
 A survivability specification is a four-tuple, {E, R, P, M } 

where:
– E is a statement of the assumed operating environment for the system
– R is a set of specifications each of which is a complete statement of a 

tolerable form of service that the system must provide.
– P is a probability distribution across the set of specifications, R.
– M is a finite-state machine denoted by the four-tuple {S,s0,V,T} 

where S is a finite set of states each of which has a unique label which 
is one of the specifications defined in R; s0 (s0 ∈ S) is the initial or 
preferred state for the machine; V is a finite set of customer values; T 
is a state transition matrix.
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– determined by the number of available trunks i,   i=n,...,0

– what are the transition probabilities from state i to i+1 or i-1
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25, λ = 5s−1, and µ = 0.3s−1 in the discussion of numerical results.
In practice, all trunks are subject to failure due to various reasons such as hard-

ware/software faults, human errors in systemmaintenance and repair, and impairment/damage
from adverse environments. For the ease of illustration, we assume the failure and re-
pair times of each trunk are exponentially distributed with rates γ and τ , respectively.
Assume that a single repair facility is shared by all trunks in the system. Then, the pure
availability model of the system is also a homogeneous CTMC as shown in Figure 1(b),
where state i indicates that there are i nonfailed trunks in the system [13]. In the follow-
ing, parameters are fixed at n = 25, γ = 0.002s−1, and τ = 0.1s−1 in the discussion of
numerical results.

n,0 n,1 n,2 n,n-1 n,n

n-1,0

1,0

0,0

n-1,1 n-1,n-1

1,1

0 1 2 n-1 n

n n-1 n-2 1 0

(a) pure performance model

(b) pure availability model (c) composite model

λλλ

λ

λ

λλλ

µ

µ

µ

µ

2µ

2µ

nµ

nµ

γ

γγ

γ
γ

2γ

2γ
(n−2)γ

(n−1)γ

(n−1)γ

nγ

nγnγ

τττ

τ

τττ

Figure 1: The performance, availability, and composite Markov models

Combining the performance and availability model, we can construct the composite
performance–availability model as shown in Figure 1(c), where state (i, j) indicates that
there are i nonfailed trunks in the system and j of them are carrying ongoing calls [13].
The steady state and transient probabilities of the performance, the availability, and the
composite models can be either solved in closed form or through the use of the well
known software packages such as SHARPE (Symbolic Hierarchical Automated Relia-
bility and Performance Evaluator) developed by researchers at Duke university [11].

3.2 Performance, Availability, and Performability Quantification
We present the calculation and results of performance, availability, and performability
measures in this section to show the difference and connection between these traditional
measures and the survivability measures.

Performance: Suppose the blocking probability Pbk is the performance measure of
interest in our example. The steady state Pbk can be computed from the pure perfor-
mance model as Pbk = πP

n . The steady state probability πP
j of state j in the pure

performance model can be obtained from the following closed form solution

πP
j =

(λ
µ)j/j!∑n

k=0(
λ
µ)k/k!

. (1)
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With the parameters given in Section 3.1, the numerical result is Pbk = 0.013376.
Availability: The steady state availability PA can be computed from the pure avail-

ability model as PA = πA
0 . Similar to Equation (1), the steady state probability πA

i of
state i in the pure availability model can be obtained from the following formula

πA
i =

( τ
γ )i/i!∑n

k=0(
τ
γ )k/k!

(2)

With the parameters given in Section 3.1, the result is PA = 1 − 2.6935 × 10−18.
Performability: The blocking probability P

′

bk is a performability measure since fail-
ure/repair activities are considered. The steady stateP

′

bk is computed asP
′

bk =
∑n

k=0 πC
k, k

where πC
k, k is the steady state probability of state (k, k) in the composite model. With

the parameters given in Section 3.1, the result is P
′

bk = 0.020178.

3.3 Survivability Quantification

Following Definition 1, the operating environment E is presented in the second para-
graph of Section 3.1. Service specification R (Rn, ..., Ri, ..., R0) is determined by the
number of available trunks i (i = n, n − 1, ..., 0) in the system. In the finite-state ma-
chine (FSM) each state is associated with one of R and the initial state s0 corresponds to
Rn. The FSM can be derived from the availability model since the change of customer
values over time or different operating environments is not considered. Then, P is the
probability distribution of all FSM states, i.e., πA

i in Equation (2).
To get the transition matrix T , the transition probability from state i to state i + 1

needs to be computed. For i = 1, 2, ..., n − 1, each state Ri has one transition going to
i−1 with rate τ and one transition going to i+1 with rate iγ. The transition probability
is τ

iγ+τ for the former case and
iγ

iγ+τ for the latter.
The numerical results are shown in Figure 2 where the number below each state

indicates the state probability in the setP . Note that the composite model is not explicitly
needed in this definition and no transient analysis is mentioned.
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chine (FSM) each state is associated with one of R and the initial state s0 corresponds to
Rn. The FSM can be derived from the availability model since the change of customer
values over time or different operating environments is not considered. Then, P is the
probability distribution of all FSM states, i.e., πA

i in Equation (2).
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obtained from the availability model since no performance issue is addressed in this
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T1A1.2 Model
 Definition 3. 
 Suppose a measure of interest M has the value m0 just before 

a failure happens. The survivability behavior can be depicted 
by the following attributes: ma is the value of M just after the 
failure occurs, mu is the maximum difference between the 
value of M and ma after the failure, mr is the restored value 
of M after some time tr, and tR is the time for the system to 
restore the value m0.
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Survivability after 1st Failure
 Based on T1A1.2 definition: Note that it does not matter 

when the failure occurs.
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The other is the failure transitions from the first row to the second row, which governs
the probability mapping from πP

j to p o
n−1, j . Since state (n − 1, j) can be reached from

either state (n, j) (with transition rate (n − j)γ) or state (n, j + 1) (with transition rate
(j + 1)γ) upon the firing of the corresponding failure transitions. Therefore, p o

n−1, j is
assigned as follows

p o
n−1, j =

n − j

n
πP

j +
j + 1

n
πP

j+1 (5)

For the measure of interest Pbk, x0 = πP
n is the blocking probability in normal

operation with no occurrence of failures. The transient blocking probability Pbk(t) is

Pbk(t) = pn−1, n−1(t) + pn, n(t) (6)

where pn−1, n−1(t) and pn, n(t) are the transient probabilities of state (n−1, n−1) and
(n, n) in the truncated composite model.
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Figure 4: Survivability results

The numerical results are shown in Figure 4(a) where the survivability attributes
Sa, Su, Sr, and tR can be obtained from thePbk(t) curve asm0 = 1.337604×10−2, ma =
1.417861×10−2, mu = 3.216020×10−3, mr = 1.422506×10−2,when tr = 20s, tR =
39s, 1% relative error.

From the above quantification of three survivability definitions we can see that all the
measures of interest based on these definitions can be derived from the Markov models
developed in Section 3.1. The quantification procedure shows how the availability, per-
formance, and composite models are constructed and solved in different circumstances.

3.4 More Survivability Measures

While the definitions given in the Section 2 have addressed several important aspects of
the survivability behavior, the quantification study is not necessarily limited to current
definitions. More characteristics can be revealed by either new measures of interest or
the same measure under different circumstances.
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T1A1.2 Markov Model
 Shown is the portion of the previous chain where only the 

first failure is considered
– this represents the T1A1.2 model
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definition. The expected survivability is computed as

E[N ] =
n∑

i=1

i

n
πA

i (3)

Similarly, zero survivability N0 corresponds to πA
0 , and r-percentile survivability is

computed as
Nr =

∑
i≤n·r%

πA
i (4)

Note that E[N ] has been called capacity-oriented availability (COA) by Trivedi and
Heimann et al. in their performability study of multiprocessor systems [3] [13]. This
definition of survivability is essentially the same as the performability definition given
by Huslende [4].

The numerical results are as follows: E[N ] = 0.964968, N0 = 2.693515 × 10−18,
N20 = 7.775417 × 10−12, N40 = 9.007691 × 10−8, N60 = 8.878974 × 10−5, N80 =
1.724949 × 10−2.

Following definition 3, suppose the measure of interestM is the blocking probability
Pbk in our example. Since this definition explicitly indicates the time dependent charac-
teristics of the system behavior, transient solutions are needed in this case. Suppose we
only consider the case of the first failure and no additional failures will happen before
the repair. We construct the model in the following way. States indicating no failure or
one failure (the first two rows in Figure 1(c)) are included and all other irrelevant states
are truncated from the composite model. Also remove all the failure transitions from the
first row to the second row since we want to study the system behavior given a failure has
happened. These transitions are marked with dotted arcs suggesting that instantaneous
transitions have taken place. The new composite model is shown in Figure 3(a).
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(a) T1A1 Markov model
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Figure 3: The truncated Markov models

The initial probability assignment p o
i,j of the states in the truncated composite model

indicates the probability distribution of system states right after the occurrence of the
failure. We set po

n, j = 0 since the failure has already happened. The value of p o
n−1, j is

determined by two factors. One is the system behavior before the failure happens, which
can be computed from the steady state probability πP

j in the pure performance model as
shown in Equation (1).
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Truncated composite model
 Model is without repair

– grey circles and arc represent the removed states and transitions
– dotted arcs indicate instantaneous transitions have taken place

» initial probabilities are from truncated composite model
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definition. The expected survivability is computed as
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0 , and r-percentile survivability is
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πA
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Note that E[N ] has been called capacity-oriented availability (COA) by Trivedi and
Heimann et al. in their performability study of multiprocessor systems [3] [13]. This
definition of survivability is essentially the same as the performability definition given
by Huslende [4].

The numerical results are as follows: E[N ] = 0.964968, N0 = 2.693515 × 10−18,
N20 = 7.775417 × 10−12, N40 = 9.007691 × 10−8, N60 = 8.878974 × 10−5, N80 =
1.724949 × 10−2.

Following definition 3, suppose the measure of interestM is the blocking probability
Pbk in our example. Since this definition explicitly indicates the time dependent charac-
teristics of the system behavior, transient solutions are needed in this case. Suppose we
only consider the case of the first failure and no additional failures will happen before
the repair. We construct the model in the following way. States indicating no failure or
one failure (the first two rows in Figure 1(c)) are included and all other irrelevant states
are truncated from the composite model. Also remove all the failure transitions from the
first row to the second row since we want to study the system behavior given a failure has
happened. These transitions are marked with dotted arcs suggesting that instantaneous
transitions have taken place. The new composite model is shown in Figure 3(a).

n,0 n,1 n,2 n,n-1 n,n

n-1,0 n-1,1 n-1,n-1

(a) T1A1 Markov model

n,0 n,1 n,2 n,n-1 n,n

n-1,0 n-1,1 n-1,n-1

(b) Truncated composite model w/o repair

λ

λλλ

λ

λλλ

µ

µ

µ

µ 2µ2µ nµ

nµ
ττττττ γ

γ

γ
γ 2γ2γ

(n−2)γ(n−1)γ(n−1)γ
nγnγnγ nγ

Figure 3: The truncated Markov models

The initial probability assignment p o
i,j of the states in the truncated composite model

indicates the probability distribution of system states right after the occurrence of the
failure. We set po

n, j = 0 since the failure has already happened. The value of p o
n−1, j is

determined by two factors. One is the system behavior before the failure happens, which
can be computed from the steady state probability πP

j in the pure performance model as
shown in Equation (1).
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Truncated composite model
 What are the probabilities of begin in a state i,j ?

– since failure has already happened
– and

– since state (n-1,j) can be reached from
» state (n,j)  with transition rate (n-j) γ
» state (n,j+1)  with transition rate  (j+1) γ 
» note there is no γ left in this expression!  Why?
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definition. The expected survivability is computed as
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teristics of the system behavior, transient solutions are needed in this case. Suppose we
only consider the case of the first failure and no additional failures will happen before
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determined by two factors. One is the system behavior before the failure happens, which
can be computed from the steady state probability πP

j in the pure performance model as
shown in Equation (1).
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The other is the failure transitions from the first row to the second row, which governs
the probability mapping from πP

j to p o
n−1, j . Since state (n − 1, j) can be reached from

either state (n, j) (with transition rate (n − j)γ) or state (n, j + 1) (with transition rate
(j + 1)γ) upon the firing of the corresponding failure transitions. Therefore, p o

n−1, j is
assigned as follows

p o
n−1, j =

n − j

n
πP

j +
j + 1

n
πP

j+1 (5)

For the measure of interest Pbk, x0 = πP
n is the blocking probability in normal

operation with no occurrence of failures. The transient blocking probability Pbk(t) is

Pbk(t) = pn−1, n−1(t) + pn, n(t) (6)

where pn−1, n−1(t) and pn, n(t) are the transient probabilities of state (n−1, n−1) and
(n, n) in the truncated composite model.
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Figure 4: Survivability results

The numerical results are shown in Figure 4(a) where the survivability attributes
Sa, Su, Sr, and tR can be obtained from thePbk(t) curve asm0 = 1.337604×10−2, ma =
1.417861×10−2, mu = 3.216020×10−3, mr = 1.422506×10−2,when tr = 20s, tR =
39s, 1% relative error.

From the above quantification of three survivability definitions we can see that all the
measures of interest based on these definitions can be derived from the Markov models
developed in Section 3.1. The quantification procedure shows how the availability, per-
formance, and composite models are constructed and solved in different circumstances.

3.4 More Survivability Measures

While the definitions given in the Section 2 have addressed several important aspects of
the survivability behavior, the quantification study is not necessarily limited to current
definitions. More characteristics can be revealed by either new measures of interest or
the same measure under different circumstances.
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– where pn−1, n−1 (t) and pn, n (t) are the transient probabilities of        
state (n−1, n−1) and (n, n) in the truncated composite model
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definition. The expected survivability is computed as

E[N ] =
n∑

i=1

i

n
πA

i (3)

Similarly, zero survivability N0 corresponds to πA
0 , and r-percentile survivability is

computed as
Nr =

∑
i≤n·r%

πA
i (4)

Note that E[N ] has been called capacity-oriented availability (COA) by Trivedi and
Heimann et al. in their performability study of multiprocessor systems [3] [13]. This
definition of survivability is essentially the same as the performability definition given
by Huslende [4].

The numerical results are as follows: E[N ] = 0.964968, N0 = 2.693515 × 10−18,
N20 = 7.775417 × 10−12, N40 = 9.007691 × 10−8, N60 = 8.878974 × 10−5, N80 =
1.724949 × 10−2.

Following definition 3, suppose the measure of interestM is the blocking probability
Pbk in our example. Since this definition explicitly indicates the time dependent charac-
teristics of the system behavior, transient solutions are needed in this case. Suppose we
only consider the case of the first failure and no additional failures will happen before
the repair. We construct the model in the following way. States indicating no failure or
one failure (the first two rows in Figure 1(c)) are included and all other irrelevant states
are truncated from the composite model. Also remove all the failure transitions from the
first row to the second row since we want to study the system behavior given a failure has
happened. These transitions are marked with dotted arcs suggesting that instantaneous
transitions have taken place. The new composite model is shown in Figure 3(a).
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(a) T1A1 Markov model
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(b) Truncated composite model w/o repair
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Figure 3: The truncated Markov models

The initial probability assignment p o
i,j of the states in the truncated composite model

indicates the probability distribution of system states right after the occurrence of the
failure. We set po

n, j = 0 since the failure has already happened. The value of p o
n−1, j is

determined by two factors. One is the system behavior before the failure happens, which
can be computed from the steady state probability πP

j in the pure performance model as
shown in Equation (1).

A General Framework for Network Survivability Quantification

The other is the failure transitions from the first row to the second row, which governs
the probability mapping from πP

j to p o
n−1, j . Since state (n − 1, j) can be reached from

either state (n, j) (with transition rate (n − j)γ) or state (n, j + 1) (with transition rate
(j + 1)γ) upon the firing of the corresponding failure transitions. Therefore, p o

n−1, j is
assigned as follows

p o
n−1, j =

n − j

n
πP

j +
j + 1

n
πP

j+1 (5)

For the measure of interest Pbk, x0 = πP
n is the blocking probability in normal

operation with no occurrence of failures. The transient blocking probability Pbk(t) is

Pbk(t) = pn−1, n−1(t) + pn, n(t) (6)

where pn−1, n−1(t) and pn, n(t) are the transient probabilities of state (n−1, n−1) and
(n, n) in the truncated composite model.
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Figure 4: Survivability results

The numerical results are shown in Figure 4(a) where the survivability attributes
Sa, Su, Sr, and tR can be obtained from thePbk(t) curve asm0 = 1.337604×10−2, ma =
1.417861×10−2, mu = 3.216020×10−3, mr = 1.422506×10−2,when tr = 20s, tR =
39s, 1% relative error.

From the above quantification of three survivability definitions we can see that all the
measures of interest based on these definitions can be derived from the Markov models
developed in Section 3.1. The quantification procedure shows how the availability, per-
formance, and composite models are constructed and solved in different circumstances.

3.4 More Survivability Measures

While the definitions given in the Section 2 have addressed several important aspects of
the survivability behavior, the quantification study is not necessarily limited to current
definitions. More characteristics can be revealed by either new measures of interest or
the same measure under different circumstances.
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The other is the failure transitions from the first row to the second row, which governs
the probability mapping from πP

j to p o
n−1, j . Since state (n − 1, j) can be reached from

either state (n, j) (with transition rate (n − j)γ) or state (n, j + 1) (with transition rate
(j + 1)γ) upon the firing of the corresponding failure transitions. Therefore, p o

n−1, j is
assigned as follows

p o
n−1, j =

n − j

n
πP

j +
j + 1

n
πP

j+1 (5)

For the measure of interest Pbk, x0 = πP
n is the blocking probability in normal

operation with no occurrence of failures. The transient blocking probability Pbk(t) is

Pbk(t) = pn−1, n−1(t) + pn, n(t) (6)

where pn−1, n−1(t) and pn, n(t) are the transient probabilities of state (n−1, n−1) and
(n, n) in the truncated composite model.
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The numerical results are shown in Figure 4(a) where the survivability attributes
Sa, Su, Sr, and tR can be obtained from thePbk(t) curve asm0 = 1.337604×10−2, ma =
1.417861×10−2, mu = 3.216020×10−3, mr = 1.422506×10−2,when tr = 20s, tR =
39s, 1% relative error.

From the above quantification of three survivability definitions we can see that all the
measures of interest based on these definitions can be derived from the Markov models
developed in Section 3.1. The quantification procedure shows how the availability, per-
formance, and composite models are constructed and solved in different circumstances.

3.4 More Survivability Measures

While the definitions given in the Section 2 have addressed several important aspects of
the survivability behavior, the quantification study is not necessarily limited to current
definitions. More characteristics can be revealed by either new measures of interest or
the same measure under different circumstances.
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Survivability Quantification
 The model is then extended to consider more that one (first) 

faults.
 Note that the approach of the paper overcomes the problems 

associated with fail-rates, i.e. what is the fail-rate in a 
survivable system?
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