
CS448/548 Sequence 20

Case Study: SITAR

 We consider SITAR
– Source of the discussion is the paper:

» SITAR: A Scalable Intrusion-Tolerant Architecture for
Distributed Services,

» by Feiyi Wang, Fengmin Gong, Chandramouli Sargor,
Katerina Goseva-Popstojanova, Kishor Trivedi, Frank
Jou,

» Proc 2001 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West
Point, NY, 5–6 June 2001

1

CS448/548 Sequence 20

SITAR

 Main issues
– focus on “continuation of operation”
– utilize redundancy and diversity
– architecture components:

» proxy servers
» acceptance monitor
» ballot monitors
» adaptive reconfiguration
» audit control

2

CS448/548 Sequence 20

Focus on attacks or their effect?

Should we focus on attacks?
– if yes, then what attacks?
– all attacks are not even known.

3

CS448/548 Sequence 20

Focus on attacks or their effect?

 Shift from attacks or attacker to target of protection.
– “the effect of attack is more important than the

cause of the attack”
– Focus on essential functionalities instead

» recall that we specified a system as the union
of all functionalities

» these functionalities may have different fault
assumptions

4

CS448/548 Sequence 20

SITAR objectives

 Scalable Intrusion-tolerant Architecture for
Distributed Services (SITAR)
1.uses network-distributed services based on COTS

components (paper discusses web services)
2.utilize fault-tolerance (FT) mechanisms

» FT specific: redundancy and diversity
» malicious act: external attacks & compromised

components
3.dynamic reconfiguration

5

CS448/548 Sequence 20

SITAR Architecture
Fig. 1
generic
intrusion-
tolerant
service
architecture

6

S2

S1

A2

A1
request

B2

B1

Adaptive
Reconfiguration

Proxy Server
Monitor
Acceptance Ballot Monitor COTS Servers

P2

P1

request

response

control
Audit Control

AiBiPi Si
response

Fig. 1. A generic intrusion-tolerant service architecture

Control module and the Adaptive Reconfiguration mod-
ule, will maintain full reachability among themselves. This
reachability is critical for coordination among them and for
implementing fully dynamic reconfigurations.

Our proposed intrusion tolerant system architecture does
not require any change to the COTS client or the COTS
server applications. In fact, it is completely transparent to
both end users and server applications. In the following
sections, we discuss each of the key architecture compo-
nents in further detail.

III. Proxy Servers

In the intrusion tolerant architecture proposed above,
the Proxy Servers constitute the set of machines that are
visible to the end user and that provide the services in an
intrusion tolerant manner. Typically, an end user will not
contact a COTS server directly, in fact, the identities (IP
addresses) of the COTS servers may not even be publicly
known. As far as the end user is concerned, it is the Proxy
Server that is providing the service. Many high availability
project such as Piranha [1] is designed for Primary/Backup
classical scenarios, as illustrated in Figure 2. SITAR Proxy
Server aims to provide higher degree of tolerance through
shared control on dynamic resource pool, as illustrated in
Figure 3. We elaborate this design idea as follows.

As shown in Figure 1, a cluster of Proxy Servers will
be utilized in our architecture. While each server will have
distinct physical IP addresses that are tied to distinct phys-
ical network interfaces, they will also share a pool of virtual
IP addresses amongst themselves. Only the virtual IP ad-
dresses are made known to the clients. There may be a
single pool of virtual IP addresses or there could be one
pool per intrusion tolerant service that is being provided.
The main advantage in using virtual IP addresses is that
it allows easy migration of addresses from one machine to
another in case of a fault or intrusion. We will design tech-
niques to share these virtual IP addresses among the active
machines in the proxy cluster in such a fashion that as long
as even one of the machines in the cluster is active, all of the
virtual IP addresses advertised to the clients will be avail-
able. This is achieved by migrating virtual IP addresses
from a faulty Proxy Server to the Proxy Servers that are

functioning correctly. Migrating addresses directly makes
it possible to do load balancing by moving virtual IP ad-
dresses from a heavily loaded machine to a lightly loaded
one. Also, since clients access services using virtual IP ad-
dresses, migration also enables dynamic reconfiguration of
proxies. For instance, under normal circumstances a spe-
cific service may be provided only on one Proxy Server.
When under attack, the service could be migrated to all
the proxies to improve survivability. It must be empha-
sized that all such migrations/reconfigurations are com-
pletely transparent to the end user.

R

Floating IP address

primary server backup server

R

R can be a generic resource object

R:

Fig. 2. Primary/backup operation mode

While migrating virtual IP addresses from one Proxy
Server to another is in itself fairly simple, the main issue
associated with migration is to ensure that the “state” as-
sociated with services being proxied is correctly migrated
as well. For instance, a Proxy Server will need to main-
tain state to keep track of requests issued by clients, the
particular set of servers, Ballot and Acceptance monitors
used to fulfill specific requests, the virtual IP address used
by the client to make the request and other such parame-
ters. Clearly, one cannot expect a compromised or faulty
Proxy Server to migrate this state upon detection of a fault
or intrusion. The state information would therefore need
to be shared in such a way that all of the Proxy Servers
have a consistent view of the global shared state. There
are many possible approaches to sharing such state infor-
mation. For example, reliable multicast or shared memory
techniques could be used to exchange such information.
However, there are problems with both approaches. With
reliable multicast, there can be a significant impact on net-
work performance especially if the state does not need to
be updated frequently. Shared memory implementations

ISBN 0-7803-9814-9/$10.00 c∞2001 IEEE 40

CS448/548 Sequence 20

Proxy Servers

 What is a Proxy Server?
 Proxy Servers

– requests are
» not made to servers

 may not be
known

» made to proxy
– have physical IP addr.
– share pool of virtual IP

addresses

7

S2

S1

A2

A1
request

B2

B1

Adaptive
Reconfiguration

Proxy Server
Monitor
Acceptance Ballot Monitor COTS Servers

P2

P1

request

response

control
Audit Control

AiBiPi Si
response

Fig. 1. A generic intrusion-tolerant service architecture

Control module and the Adaptive Reconfiguration mod-
ule, will maintain full reachability among themselves. This
reachability is critical for coordination among them and for
implementing fully dynamic reconfigurations.

Our proposed intrusion tolerant system architecture does
not require any change to the COTS client or the COTS
server applications. In fact, it is completely transparent to
both end users and server applications. In the following
sections, we discuss each of the key architecture compo-
nents in further detail.

III. Proxy Servers

In the intrusion tolerant architecture proposed above,
the Proxy Servers constitute the set of machines that are
visible to the end user and that provide the services in an
intrusion tolerant manner. Typically, an end user will not
contact a COTS server directly, in fact, the identities (IP
addresses) of the COTS servers may not even be publicly
known. As far as the end user is concerned, it is the Proxy
Server that is providing the service. Many high availability
project such as Piranha [1] is designed for Primary/Backup
classical scenarios, as illustrated in Figure 2. SITAR Proxy
Server aims to provide higher degree of tolerance through
shared control on dynamic resource pool, as illustrated in
Figure 3. We elaborate this design idea as follows.

As shown in Figure 1, a cluster of Proxy Servers will
be utilized in our architecture. While each server will have
distinct physical IP addresses that are tied to distinct phys-
ical network interfaces, they will also share a pool of virtual
IP addresses amongst themselves. Only the virtual IP ad-
dresses are made known to the clients. There may be a
single pool of virtual IP addresses or there could be one
pool per intrusion tolerant service that is being provided.
The main advantage in using virtual IP addresses is that
it allows easy migration of addresses from one machine to
another in case of a fault or intrusion. We will design tech-
niques to share these virtual IP addresses among the active
machines in the proxy cluster in such a fashion that as long
as even one of the machines in the cluster is active, all of the
virtual IP addresses advertised to the clients will be avail-
able. This is achieved by migrating virtual IP addresses
from a faulty Proxy Server to the Proxy Servers that are

functioning correctly. Migrating addresses directly makes
it possible to do load balancing by moving virtual IP ad-
dresses from a heavily loaded machine to a lightly loaded
one. Also, since clients access services using virtual IP ad-
dresses, migration also enables dynamic reconfiguration of
proxies. For instance, under normal circumstances a spe-
cific service may be provided only on one Proxy Server.
When under attack, the service could be migrated to all
the proxies to improve survivability. It must be empha-
sized that all such migrations/reconfigurations are com-
pletely transparent to the end user.

R

Floating IP address

primary server backup server

R

R can be a generic resource object

R:

Fig. 2. Primary/backup operation mode

While migrating virtual IP addresses from one Proxy
Server to another is in itself fairly simple, the main issue
associated with migration is to ensure that the “state” as-
sociated with services being proxied is correctly migrated
as well. For instance, a Proxy Server will need to main-
tain state to keep track of requests issued by clients, the
particular set of servers, Ballot and Acceptance monitors
used to fulfill specific requests, the virtual IP address used
by the client to make the request and other such parame-
ters. Clearly, one cannot expect a compromised or faulty
Proxy Server to migrate this state upon detection of a fault
or intrusion. The state information would therefore need
to be shared in such a way that all of the Proxy Servers
have a consistent view of the global shared state. There
are many possible approaches to sharing such state infor-
mation. For example, reliable multicast or shared memory
techniques could be used to exchange such information.
However, there are problems with both approaches. With
reliable multicast, there can be a significant impact on net-
work performance especially if the state does not need to
be updated frequently. Shared memory implementations

ISBN 0-7803-9814-9/$10.00 c∞2001 IEEE 40

CS448/548 Sequence 20

Proxy Servers

8

S2

S1

A2

A1
request

B2

B1

Adaptive
Reconfiguration

Proxy Server
Monitor
Acceptance Ballot Monitor COTS Servers

P2

P1

request

response

control
Audit Control

AiBiPi Si
response

Fig. 1. A generic intrusion-tolerant service architecture

Control module and the Adaptive Reconfiguration mod-
ule, will maintain full reachability among themselves. This
reachability is critical for coordination among them and for
implementing fully dynamic reconfigurations.

Our proposed intrusion tolerant system architecture does
not require any change to the COTS client or the COTS
server applications. In fact, it is completely transparent to
both end users and server applications. In the following
sections, we discuss each of the key architecture compo-
nents in further detail.

III. Proxy Servers

In the intrusion tolerant architecture proposed above,
the Proxy Servers constitute the set of machines that are
visible to the end user and that provide the services in an
intrusion tolerant manner. Typically, an end user will not
contact a COTS server directly, in fact, the identities (IP
addresses) of the COTS servers may not even be publicly
known. As far as the end user is concerned, it is the Proxy
Server that is providing the service. Many high availability
project such as Piranha [1] is designed for Primary/Backup
classical scenarios, as illustrated in Figure 2. SITAR Proxy
Server aims to provide higher degree of tolerance through
shared control on dynamic resource pool, as illustrated in
Figure 3. We elaborate this design idea as follows.

As shown in Figure 1, a cluster of Proxy Servers will
be utilized in our architecture. While each server will have
distinct physical IP addresses that are tied to distinct phys-
ical network interfaces, they will also share a pool of virtual
IP addresses amongst themselves. Only the virtual IP ad-
dresses are made known to the clients. There may be a
single pool of virtual IP addresses or there could be one
pool per intrusion tolerant service that is being provided.
The main advantage in using virtual IP addresses is that
it allows easy migration of addresses from one machine to
another in case of a fault or intrusion. We will design tech-
niques to share these virtual IP addresses among the active
machines in the proxy cluster in such a fashion that as long
as even one of the machines in the cluster is active, all of the
virtual IP addresses advertised to the clients will be avail-
able. This is achieved by migrating virtual IP addresses
from a faulty Proxy Server to the Proxy Servers that are

functioning correctly. Migrating addresses directly makes
it possible to do load balancing by moving virtual IP ad-
dresses from a heavily loaded machine to a lightly loaded
one. Also, since clients access services using virtual IP ad-
dresses, migration also enables dynamic reconfiguration of
proxies. For instance, under normal circumstances a spe-
cific service may be provided only on one Proxy Server.
When under attack, the service could be migrated to all
the proxies to improve survivability. It must be empha-
sized that all such migrations/reconfigurations are com-
pletely transparent to the end user.

R

Floating IP address

primary server backup server

R

R can be a generic resource object

R:

Fig. 2. Primary/backup operation mode

While migrating virtual IP addresses from one Proxy
Server to another is in itself fairly simple, the main issue
associated with migration is to ensure that the “state” as-
sociated with services being proxied is correctly migrated
as well. For instance, a Proxy Server will need to main-
tain state to keep track of requests issued by clients, the
particular set of servers, Ballot and Acceptance monitors
used to fulfill specific requests, the virtual IP address used
by the client to make the request and other such parame-
ters. Clearly, one cannot expect a compromised or faulty
Proxy Server to migrate this state upon detection of a fault
or intrusion. The state information would therefore need
to be shared in such a way that all of the Proxy Servers
have a consistent view of the global shared state. There
are many possible approaches to sharing such state infor-
mation. For example, reliable multicast or shared memory
techniques could be used to exchange such information.
However, there are problems with both approaches. With
reliable multicast, there can be a significant impact on net-
work performance especially if the state does not need to
be updated frequently. Shared memory implementations

ISBN 0-7803-9814-9/$10.00 c∞2001 IEEE 40

CS448/548 Sequence 20

Proxy Servers

9

tend to be platform dependent and stand in the way of
design diversity. Our preliminary analysis indicates that
Javaspaces [2] may be an appropriate mechanism for shar-
ing global state and other control information.

R
R

R

primary server 1
primary server 2

lease

lease expire/fail

Resource Pool

backup server

take over

Fig. 3. Shared resource pool operation mode

Javaspaces is a space based distributed computing
paradigm that provides a platform independent framework
for implementing such coordination mechanisms. Unlike
reliable multicast, a state object need not be multicast to
all the Proxy Servers. Rather, it is simply written into
the space and can be retrieved by any other server that is
waiting for updated information. Since it is implemented
in Java, it is naturally platform independent and supports
design diversity. Moreover, many of the features devel-
oped for distributed computing can be utilized for provid-
ing higher degree of fault tolerance as well. For instance,
Javaspaces defines a transaction operation. A transaction
is a collection of operations that are performed atomically.
Either all of the operations succeed, or none of them does.
If all operations occur successfully, the transaction is said
to be committed. If it is not committed, then the transac-
tion is aborted. This is extremely useful for sharing state
information. A Proxy Server may take the state object out
of the space and after updating it to reflect new connection
requests etc, will write it back into the space. However, if
the Proxy Server crashes while it is updating the state ob-
ject, the information is lost from the space. A transaction
operation automatically ensures that this will not happen.
The take operation from the space will only be committed
if the subsequent write operation into the space is com-
pleted as well. Using Javaspaces for coordination will also
make it possible to leverage research results from a recently
funded DARPA project Yalta [3] at MCNC that is aimed
at building a Javaspace based secure collaboration infras-
tructure in support of Dynamic Coalitions.

The Proxy Servers receive client requests and forward it
to the actual COTS servers that will fulfill the request. De-
pending on the security posture of the overall system, this
request might be forwarded to more than one server. De-
cisions on which servers to forward the requests to may be
made on a per request basis (under high threat conditions)
or on a session basis (under low threat conditions). The
Proxy Server is responsible for coordinating the forwarding
of client requests to COTS servers, correlating them with
the responses from the Ballot Monitors and forwarding the

final result back to the client. We will explore Javaspaces
based mechanisms as one possible means of achieving the
coordination between the Proxy Servers and other compo-
nents in our architecture.

The Proxy Servers form the front line of our intrusion
tolerant architecture and are most likely to be the tar-
gets of external attacks. These attacks can range from
simple denial of service attacks to attacks that may com-
promise one or more of the Proxy Servers. Detection of
attacks and possibly compromised Proxy Servers therefore
requires for timely action to be taken to reconfigure the
system and provide non-interrupted service to the clients.
This is accomplished by deploying an IDS on each of the
Proxy Servers. The IDS software on each proxy will contin-
ually monitor the network tra⌅c for external attacks and
will also monitor all other proxies to determine if they are
behaving correctly. We intend to utilize and extend exist-
ing research results from our earlier projects in building
the IDS system. Specifically, the recently completed Ji-
Nao [4] project at MCNC has lead to the development of a
highly extensible intrusion detection system that uses rule
based, protocol based and statistical based approaches to
detect intrusions. The JiNao IDS can be tailored to our
specific environment and deployed on each of the Proxy
Servers. Procedures for exclusion/inclusion of physical ma-
chines from/into the proxy cluster will also be developed.

When the IDS on a Proxy Server detects an attack or
compromised peer, the ARM will be notified. The ARM
will evaluate this along with all security relevant informa-
tion from other modules and decide on whether a reconfig-
uration is necessary. Reconfiguration for the Proxy Servers
includes changing the level of access control imposed on
clients, degrees of redundancy used to fulfill a client re-
quest and increased auditing.

IV. Acceptance Monitors

Acceptance Monitors process the responses from the
COTS servers and apply acceptance tests on them. The
responses, along with the results of the acceptance tests,
are then forwarded to the Ballot Monitors. Another func-
tion of the Acceptance Monitors is to detect intrusions in
the COTS servers and alert the Adaptive Reconfiguration
module.

An acceptance test is a programmer or developer pro-
vided error detection measure in a software module, in the
form of a check on the reasonableness of the results cal-
culated, which follows the execution of the module [5]. It
usually consists of a sequence of statements which will raise
an exception if the state of the system is not acceptable. If
any exception is raised by the acceptance test, the module
concerned is said to have failed or been compromised. In
our case, the module may correspond to the application
on the COTS server or the server itself. The acceptance
test forms the basis for the recovery block scheme for fault

ISBN 0-7803-9814-9/$10.00 c∞2001 IEEE 41

CS448/548 Sequence 20

Proxy Servers

 Proxy Server needs to maintain state tracking
– requests issued by clients
– set of servers
– set of ballot monitors
– set of acceptance monitors
– virtual IP address, etc.

10

CS448/548 Sequence 20

Proxy Servers

 What issues are involved when a set of proxy
servers needs to have agreement about the “global”
state of the global shared state?
– need reliable broadcast

» what is that again?
– they use Javaspaces as it has a mechanism that

acts as reliable broadcast
» allows to take state object of the space and,

after updating, to write it back
» take is only committed if subsequent write

operation is completed as well
11

CS448/548 Sequence 20

Proxy Servers

 Proxy Servers responsibilities:
– receive client requests
– forward them to the actual COTS servers
– decide (per request) which servers to forward

request to
– correlate request with response from Ballot

Monitor
– forward result back to client

12

CS448/548 Sequence 20

Proxy Servers

 Proxy Servers objectives
– form front line of intrusion tolerant architecture
– employ IDS per proxy server

» monitor network traffic for external attacks
» monitors other proxy servers

 When IDS detects attack or compromised peer
– it invokes Adaptive Reconfiguration Module

(ARM)
– ARM will reconfigure if necessary

13

CS448/548 Sequence 20

Acceptance Monitors

 Responsibilities
– Process response from COTS servers and

apply acceptance tests
– Response and result of acceptance tests are

forwarded to the Ballot Monitors
– Detect intrusions in COTS servers
– Alert ARM

14

CS448/548 Sequence 20

Acceptance Monitors

 What is an acceptance test?
– check reasonableness of results
– highly application dependent
– forms basis for recovery block scheme

15

CS448/548 Sequence 20

Acceptance Monitors

 What is a recovery block?
– invented by B. Randell in early 70s
– check out:

» The Evolution of the Recovery Block Concept, Brian
Randell and Jie Xu, in Software Fault Tolerance, 1994

16

5

planned when the system is designed, or (less commonly) may be dynamically identified by
exploratory techniques after the detection of an error. Planned atomic actions must be
maintained by imposing constraints on communication within the system. Error recovery can be
linked to the notion of an atomic action, which is said to form a restorable action if all
components within the action retain the ability to perform a mutually consistent state restoration.
These issues are discussed further in Section 1.6.

1.3 RECOVERY BLOCKS

In this Section, we discuss recovery blocks in detail, making use of the exception handling
terminology introduced above. The basic recovery block relates to sequential systems. Details of
extensions for use in concurrent systems are discussed in Section 1.6. The recovery block
approach attempts to prevent residual software faults from impacting on the system
environment, and it is aimed at providing fault-tolerant functional components which may be
nested within a sequential program. The usual syntax is as follows:

ensure acceptance test
by primary alternate
else by alternate 2

.

.
else by alternate n
else error

Here the alternates correspond to the variants of Figure 1.2, and the acceptance test to
the adjudicator, with the text above being in effect an expression of the controller. On entry to a
recovery block, the state of the system must be saved to permit backward error recovery, i.e.,
establish a checkpoint. The primary alternate is executed and then the acceptance test is
evaluated to provide an adjudication on the outcome of this primary alternate. If the acceptance
test is passed then the outcome is regarded as successful and the recovery block can be exited,
discarding the information on the state of the system taken on entry (i.e., checkpoint). However,
if the test fails or if any errors are detected by other means during the execution of the alternate,
then an exception is raised and backward error recovery is invoked. This restores the state of the
system to what it was on entry. After such recovery, the next alternate is executed and then the
acceptance test is applied again. This sequence continues until either an acceptance test is passed
or all alternates have failed the acceptance test. If all the alternates either fail the test or result in
an exception (due to an internal error being detected), a failure exception will be signalled to the
environment of the recovery block. Since recovery blocks can be nested, then the raising of such
an exception from an inner recovery block would invoke recovery in the enclosing block. The
operation of the recovery block is further illustrated in Figure 1.3.

Obviously, the linguistic structure for recovery blocks requires a suitable mechanism for
providing automatic backward error recovery. Randell produced the first such "recovery cache"
scheme, a description of which was included in the first paper on recovery blocks [Horning et
al. 1974] (although this scheme was later superseded [Anderson and Kerr 1976]). This paper
also included a discussion of "recoverable procedures" — a rather complex mechanism that
Lauer and Randell had proposed as a means of extending the recovery cacheing scheme to deal
with programmer-defined data types. This part of the paper would undoubtedly have been much

CS448/548 Sequence 20

Acceptance Monitors

17

Acceptance
testing engine

Probing
engine

Self−testing
module

Adaptive
Reconfiguration

Audit
control

S1

S2

responses of
probing requests

Sn

security
policy
database

Validation
checker

proxy cluster

intrusion trigger

accept

requests

Acceptance Monitor COTS Servers

requests

probing requests

responses
shared space

Fig. 4. Architecture of Acceptance Monitor

tolerance in software.
Acceptance tests may be devised such that they test for

what a module should do or should not do. One may be
simpler or provide a higher degree of independence com-
pared to the other. Currently, no methodology exists for
deciding on the most appropriate type of test for a given
situation.

Acceptance tests are highly application dependent. The
application has to be understood thoroughly in order to
devise meaningful tests. The choice for the type of test is
also often dictated by runtime, storage, and error detec-
tion requirements. Most acceptance tests may be classified
into the four categories described below. However, some
of these may not be directly applicable for certain services
unless suitable changes can be made to the COTS servers.

A. Satisfaction of requirements

In many cases, conditions that must be met at the com-
pletion of a module execution, are imposed by the problem
statement or the specifications for that module. These con-
ditions can be used to construct the acceptance tests. Inde-
pendence is a very important consideration in the design of
acceptance tests. It may be a di⇤cult and subtle problem
to devise an independent satisfaction of requirements.

B. Accounting tests

The kind of applications accounting checks are suitable
for, are transaction based applications which involve sim-
ple mathematical operations. Examples are airline reserva-
tion systems, library records, inventory control and control
of hazardous materials. A tally for both the total num-
ber of records and the sum over all records of a particular
data field can be compared between source and destina-
tion, whenever a large number of records are transmitted
or reordered. Practices like double entry bookkeeping have
been instituted in financial computing and are also appli-
cable in other high volume transaction applications.

C. Reasonableness test

Reasonableness tests detect software/system failures by
using precomputed ranges, expected sequences of program
states, or other relationships that are expected to be sat-
isfied. Reasonableness tests are based on physical con-
straints, while satisfaction of requirements tests are based
on logical or mathematical relationships. Reasonableness
tests are adapted for control or switching systems where
physical constraints can determine the range of possible
outcomes. Another type of reasonableness test is based on
progression between subsequent states. Tests for reason-
ableness of numerical or state variables are quite flexible
and e�ective for constructing fault tolerant process control
software. They permit acceptance criteria to be modified
as a program matures.

D. Computer runtime checks

Runtime checks comprise those provided by most current
computers as continuous execution sequences which are of-
ten hardware implemented. They detect anomalous states
such as divide by zero, overflow, underflow, undefined oper-
ation code, end of file, or write protection violations. These
runtime tests can also serve as additional acceptance tests
that cover much wider area and detect more subtle dis-
crepancies. When a runtime error is detected, a bit in a
status register is set and control is transferred to an alter-
nate routine. Data structure and procedure oriented tests
which are embedded in special software or in the operating
system can also be incorporated by runtime checks. State
chart based design can perhaps be exploited for state based
runtime checks.

In the case of our architecture, we need to determine the
acceptance tests based on the proposed applications. A
particular category of acceptance tests might be the best
suited for a given application while devising certain cate-
gories of tests may not be possible. If our architecture is
used for a Web sever, accounting tests may not be possi-
ble. In this case, the satisfaction of requirements test may
be the best suited. Specifications like response time for
requests or file format can be used for constructing accep-
tance tests.

In many of the above examples, the acceptance test may
fail due to software failure, deliberate alteration of input
or internal data, or compromise of the system. Hence, the
dividing line between system reliability and security often
becomes blurred. An advantage of this is that techniques
for improving system reliability can be used for improving
security, and vice versa. Hence acceptance tests can be
carefully devised to detect both module failures and system
intrusions.

As mentioned earlier, Acceptance Monitors are also de-
signed to detect intrusions in the COTS servers. This can
be achieved by using known intrusion detection methodolo-
gies like user profiling and application profiling. Historical

ISBN 0-7803-9814-9/$10.00 c∞2001 IEEE 42

CS448/548 Sequence 20

Acceptance Monitors

 Acceptance Tests
– Satisfaction of requirements
– Accounting tests
– Reasonableness test
– Computer runtime checks
– etc.

18

CS448/548 Sequence 20

Ballot Monitors

 This is where the decision about the final response is
be made
– voting/agreeing scheme depends on fault model

» e.g., majority, Byz. agreement algo
– before voting transformations are conducted at

three levels
» Level 1: Fletcher checksum
» Level 2: MD5 checksum
» Level 3: Keyed MD5 checksum

19

CS448/548 Sequence 20

Ballot Monitors

 Fletcher’s Algorithm
– developed in late 70s
– error detection approaching CRC quality
– algorithm

» use two 8-bit check values
» first byte is the sum of all values (div. 255)
» second byte is the sum of all values of the first

check bytes (div. 255)
» the checksum itself is not transmitted; instead a

value is compute from checksum which causes
receiver to produce a checksum of 0

20

CS448/548 Sequence 20

Ballot Monitors

 MD5 checksum
– cryptographic hash function with 128-bit

(16Byte) hash value
– used to verify data integrity
– RFC 1321

21

CS448/548 Sequence 20

Ballot Monitors

 Keyed MD5 checksum
– sender and receiver share secret key k
– sender runs MD5 checksum over concatenation of

message m and k. Then k is taken out again.
» sender transmits m + MD5(m + k)

– can use encryption as well
» sender picks k at random, encrypts it using RSA

and receiver’s public key; then encrypts with
result with own private key; sender transmits

» m+MD5(m+k)+ E(E(k,rcv_public),snd_private)

22

CS448/548 Sequence 20

Ballot Monitors

 Issues about voting
– Schemes of mapping voters to processes
– Guards and “who guards the guards”

23

CS448/548 Sequence 20

Audit Control

 “Audit is defined as the independent examination of
records and activities to ensure compliance with
established controls, policy, and operational
procedures, and to recommend any indicated
changes in controls, policy, or procedures [9].”

 Individual audit records maintained by
– each of the following)
– Proxy Server
– Acceptance Monitor
– Ballot Monitor
– ARM

24

CS448/548 Sequence 20

Audit Control

 What is the purpose Audit Records?
– derive IDS capabilities

 What data is collected and at which level?
– generation at high level may allow low level

attacks to go undetected
– generation at low level may generate data

overload

25

CS448/548 Sequence 20

Audit Control

 Audit Control Module diagnostics functions
– maintains results of diagnostic tests
– maintains test suits (tests and responds)

» what is spot-checking?

26

CS448/548 Sequence 20

Intrusion Detection Systems

 At Proxy Server
– detect intrusions from outside
– keep track of usage patters,

» e.g., request frequency,
 At Acceptance Monitor

– detect compromises in COTS servers
– monitor system activities of COTS servers

» e.g., CPU utilization, disk space, paging
» software aging tests

27

CS448/548 Sequence 20

Dynamic Reconfiguration

 Strategies depend on
– fault model, redundancy levels, detection

methods etc.
 Different ideas

– “shifting gears” - change strategies on the fly
– “graceful degradation” toward critical services
– adapt reconfiguration to current situation

» levels of security threat
» configuration as a balance of fault model and

available resources

28

CS448/548 Sequence 20

Impact

 The general ideas of the paper collect known fault
tolerance and security methods

 The general concepts shown in Figure 1 can be used
for many applications
– most intrusion tolerant systems can be somewhat

expressed by high-level mapping of these
mechanisms

29

