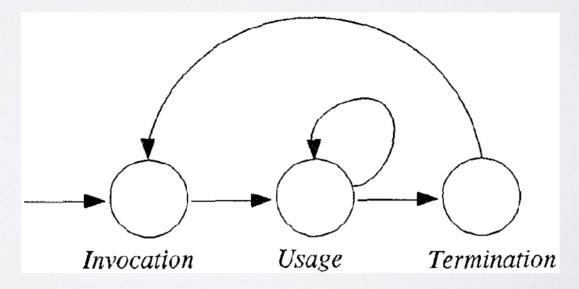
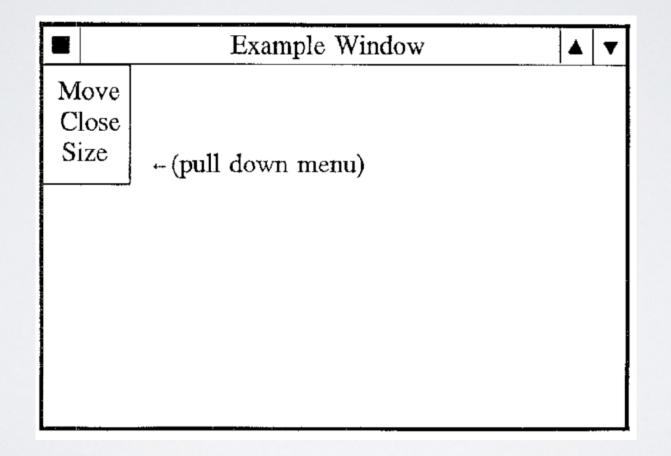

- This discussion is based on the paper:
 - [Whi93] Whittaker James A., and J.H. Poore, *Markov Analysis of Software Specifications*, ACM Transactions on Software Engineering and Methodology, Vol.2, No.1, January 1993, pp. 93-106.
 - We will discuss the paper for what it represents and later see how the approach can benefit us with respect to our "mission"
- The paper discusses Markov Chains as models for software usage
 - uses finite state discrete parameter Markov chain
 - states of the Markov chain represent entries from the input domain of the software
 - transitions (arcs) define ordering that determines the event space, or sequence, of the experiment

Black box view of software system

[Whi93, fig. I]


- Markov analysis of software specifications
 - define underlying probability law for the usage of the software under consideration
 - analysis of specification done prior to design and coding
 - analysis yields irreducible Markov chain (usage Markov chain)
 - unique start state S₀
 - unique final state S_F
 - set of intermediate usage states S_i
 - states set $S = \{S_0, S_F\}$ union S_i
 - set S is ordered by probabilistic transition relation

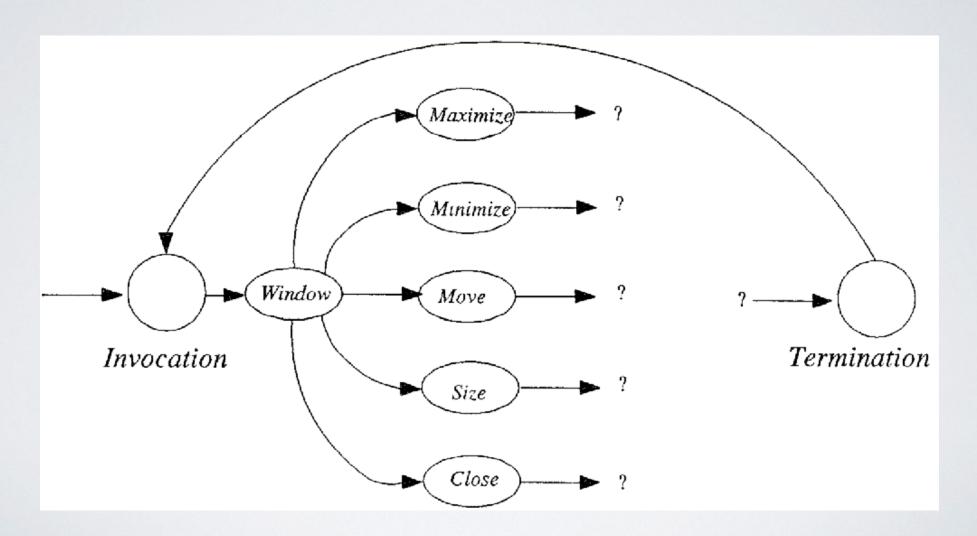
$(S \times [0,1] \times S)$


- next state is independent of all past states given the present states
 - Markov property (first order chain)

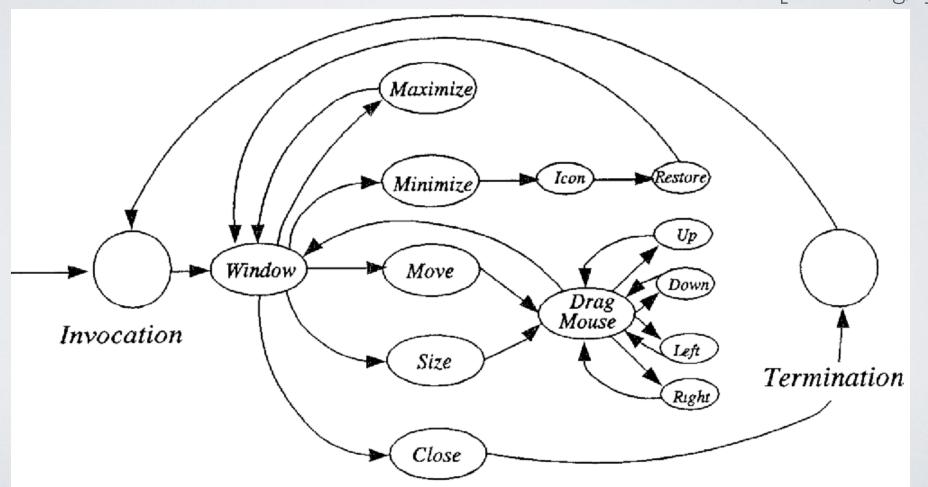
- Usage Markov chain has two properties
 - Structural Phase
 - · the states and transitions of the chain are established
 - Statistical Phase
 - the transition probabilities are assigned
- Highest level transition diagram

[Whi93, fig. 2]

• Example: a simple window application [Whi93, fig3]



ExampleSoftwareSpecification


[Whi93, table I]

Stimulus	Response
Invocation	Place the window of figure 3.2 on the screen
Select ▲	Expand the window dimensions to cover the entire area of the screen
Select ▼	Remove the window and replace it with its corresponding icon
Select • and choose <i>Move</i> from the pull down menu	Move the window as directed by the mouse input (obeying screen boundaries)
Select - and choose Size from the pull down menu	Size the window as directed by the mouse input (obeying minimum and maximum limits)
Select - and choose <i>Close</i> from the pull down menu	Remove the window from the screen
Select the icon and release	Remove the icon from the screen and restore the window

• Expansion of the top level usage diagram [Whi93, fig, 4]

- Structural phase Constructing the usage Markov chain
 - phase is complete when usage is completely modeled [Whi93, fig,5]

Statistical Phase

- assignment of transition probabilities
- different approaches to statistical phase

uninformed approach

- assign uniform probability distribution across the exit arcs for each state
- useful when no information is available to make more informed choice

Statistical Phase

- informed approach
 - when some actual user sequences are available
 - could be captured inputs from a prototype, or profiling information
 - resulting relative frequencies can be used to estimate the transition probability in the usage chain

Statistical Phase

- intended approach
 - similar to informed approach but...
 - sequences are obtained by hypothesizing runs of the software by a careful and reasonable user
 - relative frequency estimates of transition probabilities are computed from the symbol transition counts as in the informed approach

How does one rank the approaches?

Captured or hypothesized sequences [Whi93, table II]

- 1. <Invocation><Window><Maximize><Window><Close>
 <Termination>
- 2. <Invocation > <Window > <Minimize > <Icon > <Restore > <Window > <Close > < Termination >
- 3. <Invocation> < Window> < Move> < Drag Mouse> < Down> < Drag Mouse> < Right> < Drag Mouse> < Down> < Drag Mouse> < Window> < Close> < Termination>
- 4. <Invocation > <Window > <Size > <Drag Mouse > <Left > <Drag-Mouse > <Up > <Drag Mouse > <Left > <Drag Mouse > <Window > <Close > < Termination >
- 5. <Invocation > <Window > <Move > <Drag Mouse > <Down > <Drag-Mouse > <Left > <Drag Mouse > <Down > <Drag Mouse > <Window > <Close > < Termination >
- 6. <Invocation><Window><Size><Drag Mouse><Down><Drag-Mouse><Right><Drag Mouse><Window><Close><Termination>

From-State	To-State	Frequency	Probability
Invocation		6	1
Window	Maximize	1	1/12
Window	Mınimize	1	1/12
Window	Move	2	1/6
Window	Size	2	1/6
Window	Close	6	1/2
Maximize	Window	1	1
Mınimize	Icon	1	1
Icon	Restore	1	1
Restore	Window	1	1
Move	Drag Mouse	2	1
Size	Drag Mouse	2	1
Drag Mouse	Window	4	4/15
Drag Mouse	Up	1	1/15
Drag Mouse	Down	5	1/3
Drag Mouse	Left	3	1/5
Drag Mouse	Right	2	2/15
Up	Drag Mouse	1	1
Down	Drag Mouse	5	1
Left	Drag Mouse	3	1
Right	Drag Mouse	2	1
Close	Termination	6	1
Termination	Invocation	-	1

 Assigning transition probabilities

[Whi93, table II]

(putting it on one page)

1	<pre><invocation><window><maximize><window><close></close></window></maximize></window></invocation></pre>	
	<termination></termination>	

- 2. <Invocation > <Window > <Minimize > <Icon > <Restore > <Window > <Close > < Termination >
- 3. <Invocation><Window><Move><Drag Mouse><Down><Drag-Mouse><Right><Drag Mouse><Down><Drag Mouse><Window> <Close><Termination>
- 4. <Invocation><Window><Size><Drag Mouse><Left><Drag-Mouse><Up><Drag Mouse><Left><Drag Mouse><Window> <Close><Termination>
- 5. <Invocation><Window><Move><Drag Mouse><Down><Drag-Mouse><Left><Drag Mouse><Down><Drag Mouse><Window> <Close><Termination>
- 6. <Invocation><Window><Size><Drag Mouse><Down><Drag-Mouse><Right><Drag Mouse><Window><Close><Termination>

From-State	To-State	Frequency	Probability				
Invocation	Window	6	1				
Window	Maximize	1	1/12				
Window	Mınimize	1	1/12				
Window	Move	2	1/6				
Window	Size	2	1/6				
Window	Close	6	1/2				
Maximize	Window	1	1				
Mınimize	Icon	1	1				
Icon	Restore	1	1				
Restore	Window	1	1				
Move	Drag Mouse	2	1				
Sıze	Drag Mouse	2	1				
Drag Mouse	Window	4	4/15				
Drag Mouse	Up	1	1/15				
Drag Mouse	Down	5	1/3				
Drag Mouse	Left	3	1/5				
Drag Mouse	Right	2	2/15				
Up	Drag Mouse	1	1				
Down	Drag Mouse	5	1				
Left	Drag Mouse	3	1				
Right	Drag Mouse	2	1				
Close	Termination	6	1				
Termination	Invocation	-	1				

- Test Cases
 - Statistical Test Case
 - any connected state sequence of the usage chain begins in the start state and ends in the termination state
- Usage Distribution π
 - the structure of the usage chain induces a probability distribution on the input domain of the software
 - this distribution is called usage distribution
 - each state S_i has steady-state probability π_i
 - i.e., the probability of being in state i is π_i

Usage Distribution π

- usage distribution can be computed by $\pi=\pi P$
- P is the transition matrix of the usage chain
 - P can be encoded as a 2-D matrix (P is a square matrix)
 - · state labels are indices and transition probabilities are entries
 - · each row sums up to one
 - ullet each entry $\pi_{\scriptscriptstyle |}$ is the expected appearance rate of state $S_{\scriptscriptstyle |}$ in the long run
 - · this tells software testers where the user spends most of its time
 - perhaps focus attention on these parts
 - there is a danger to this though, the bug may be in the less used functions
 - states can be grouped (allows comparison of subsections of software)
 - usage distributions are just summed up
 - collapsing states in a Markov chain may require adjustments to transitions

- Other useful statistics
- Number of states necessary until S_i is expected to be generated, denoted by x_i , is computed by

$$x_i \pi_i = 1$$
 \Rightarrow $x_i = \frac{1}{\pi_i}$

• if S_i is the termination state, then x_i is the expected number of states until termination of the software

Expected number of sequences s_i necessary until state i occurs

$$S_i = \frac{X_i}{X_{TERM}} = \frac{\pi_{TERM}}{\pi_i}$$

- largest element of vector s identifies the amount of expected testing until all usage states are encountered at least once
- note: TERM indicates termination state

[Whi93, table III]

 Analytical results for example usage model

State	я	x	S
Invocation	0 093750	10 7	1
Window	0.187500	5 3	0.5
Махітіге	0 015625	64	6
Minimize	0 015625	64	6
Icon	0.015625	64	6
Restore	0.015625	64	6
Move	0 031250	32	3
Size	0.031250	32	3
Drag Mouse	0 234375	4.3	0.4
Up	0 015635	64	6
Down	0.078125	12 8	1.2
Left	0 046875	21.3	2
Right	0 031250	32	3
Close	0 093759	10.7	1
Termination	0 093750	10 7	1

Mean first passage times m_{jk}

• m_{jk} is the expected number of usage states visited starting from S_j until the first visit to S_k

$$m_{jk} = 1 + \sum_{i \neq k} p_{ji} m_{ik}$$

- p_{ij} indicate the transition probabilities
- indicates the extent to which S_i and S_k are encountered within the same sequence
- e.g. if m_{ik} is greater than the expected test case length, then
 - occurrence of S_i followed by S_k is expected to require multiple sequences
- note: in figure of next slide the diagonal is vector x

		A. Pool	Wind	Way May	Alin's	is tou	da.	More	5,156	Drag Mour	\$	DOWN	is a	A.Sh.	30°C	Term.
	Invocation	11	1	64	62	63	64	26	26	11	7 4	22	31	42	9	10
	Window	10	5	63	6 1	62	63	25	25	10	73	21	30	41	8	9
	Maximize	11	1	64	62	63	64	26	26	11	74	22	31	42	9	10
	Minimize	13	3	66	64	1	2	28	28	13	76	24	33	44	1 1	12
	Icon	12	2	65	63	64	1	27	27	12	75	23	32	43	10	11
f	Restore	11	1	64	62	63	64	26	26	11	74	22	31	42	9	10
	Move	17	8	71	69	70	71	32	32	I	64	13	21	32	15	16
	Size	17	8	71	69	70	71	32	32	1	64	13	21	32	15	16
	Drag Mouse Up	16 17	7 8	70 71	68 69	69 70	70 71	31 32	31 32	4 1	63 64	12 13	20 21	31 32	14 15	15 16
	Down	17	8	71	69	70	71	32	3 2	1	64	13	21	32	15	16
	Left	17	8	71	69	70	7 1	32	32	1	64	13	21	32	15	16
	Right	17	8	71	69	70	71	32	32	1	64	13	21	32	15	16
	Close	2	3	66	64	65	66	28	28	13	76	24	33	44	11	1
	Termination	1	2	65	63	64	65	27	27	12	75	23	32	43	10	11

Mean

[Whi93, fig.6]

The mean first passage matrix for the example usage model (entries are rounded).

- Source entropy of usage chain
 - the source entropy quantifies the uncertainty in a stochastic source
 - the entropy of a random variable f is the expected "surprise" of the event that f(x)=y

$$H = -\sum_{i} \pi_{i} \sum_{j} p_{ij} \log p_{ij}$$

- again π is the usage distribution and p_{ij} is the transition probability
- H is exponentially related to the number of sequences that are "statistically typical" of the Markov chain
 - a Markov chain has a set of typical sequences whose ensemble statistics closely match the statistics of the chain

- Source entropy of usage chain
 - high H
 - => exponentially greater number of typical sequences
 - more sequences exist because of the uncertainty present in the model
 - => Markov chain must generate more sequences in order to accurately describe the Markov source

- Source entropy of usage chain
 - source entropy serves as a comparative measure for chains with same structure but different probabilities
 - example: two chains U_1 and U_2 (chains are structurally the same)
 - transition probabilities of U_I are uninformed
 - transition probabilities of U₂ are informed
 - Let H_1 and H_2 be the source entropies for U_1 and U_2 respectively
 - If $H_1 > H_2$ then one should expect exponentially greater number of sequences using U_1 than U_2
 - U_I could serve as frame of reference
 - in previous example $H_1 = 1.0884$ and $H_2 = 0.8711$

- Conclusions
 - Usage chains are a good tool trying to answer the question "What is the user likely to do when using the software?" or
 - "What is the software to be able of doing?"
 - The paper was written to aid testing of software, not with survivability in mind
 - We need to determine how usage models can be used to benefit our "survivability" cause, e.g.,
 - How can we use usage models to define normal usage of the system?
 - How can we reverse-engineer usage patterns?
 - How can an attacker take advantage of usage models?