SURVIVING ATTACKS AND INTRUSIONS: WHAT CAN WE LEARN FROM FAULT MODELS

Axel Krings and Zhanshan (Sam) Ma Computer Science Department University of Idaho krings@uidaho.edu

SURVIVABILITY

- Many Definitions
 - Qualitative
 - Quantitative
 - No single agreed upon definition

SURVIVABILITY

- Closely related Terms
 - Intrusion Tolerance
 - Resilience
- No subscription to specific terms or definitions: for this research survivability, intrusion tolerance, and resilience are interchangeable as their specific differences in the definitions will not really matter.
- Relationship to
 - Fault-tolerance
 - Security

HOW SURVIVABLE/RESILIENT IS MY SYSTEM?

- Lessons learned from Fault-tolerance
 - FT design: the possible and the impossible

DESIGN FOR TESTABILITY

• Testing electronic circuits

- Test pattern generation problem is NP-hard
- Solution: Design for Testability
 - e.g. SCAN, partial SCAN

DESIGN FOR SURVIVABILITY

- When Systems become too complex
 - Design by Integration of Survivability mechanisms
 - Build-in not add-on
 - Design for Survivability has surfaced in different contexts

DESIGN FOR ANALYZABILITY

- Not a new concept
- e.g., Series-Parallel RBD
 - Not all systems are Series-Parallel!

FAULT MODELS PLAY CRITICAL ROLE

FAULT ASSUMPTIONS

- Do hybrid fault models apply outside of fault tolerance?
 - Many mechanisms from security & fault-tolerance exist

BUT in the end, their impact on the faults they can produce is what <u>really</u> counts

FAULT ASSUMPTIONS

- Example: authentication
 - authentication mechanism reveals fault
 - potentially benign, depends on how many nodes are affected
 - authentication is broken
 - potential for symmetric or asymmetric
- Slight departure from strict definitions of *fault* of the dependability community

SYSTEM DEFINITION

- A collection of Functionalities f_i
 - applications (software modules)
 - system components
- Fault Descriptions F_i

- $System = \sum_{i=1}^{\kappa} f_i$ $System = \bigcup_{i=1}^{k} f_i$
- defines fault model with respect to functionality f_i
- defines fault model that f_i is designed to tolerate

SYSTEM DEFINITION

- Fault Descriptions F_i
 - example: communication with authentication
 - if authentication is assumed uncompromisable:
 - • $F_i = (b)$
 - if authentication is assumed to be compromisable:
 - • $F_i = (b,s,a)$

DYNAMIC ENVIRONMENT

- What are the impacts of
 - changes in fault assumptions
 - security feature availability (or their failure)?

Solis down to the analysis of f_i in the context of F_i and its support infrastructure

IMPORTANT QUESTIONS:

- Given an existing system or application, what is the impact of **adjustments** in the **fault assumptions**?
- Given an existing system or application, what is the impact of **adding** or **subtracting security features**?
- What is the impact of **infrastructure changes** on performance or any of the "-ility" requirements?

SYSTEM ANALYSIS

- Quantification of survivability under assumption of
 - fault model
 - e.g. hybrid fault model
 - fault environment
 - very complex as it addresses statistical assumption about the faults themselves, e.g.
 - fail rates
 - hazard function
 - independence or dependence of faults...

MODEL ANALYSIS

- Reality however is moving towards "UUUR Events"
 - Unpredictable, latent,
 - Unobserved and
 - Unobservable Risks

MODEL ANALYSIS

- Recent introduction of 3-layer survivability analysis architecture [Ma & Krings 2008]
 - <u>tactical</u>, strategic, and operational level
- Key observation: fundamental definition in survival analysis is survivor function S(t) = Pr(T>t), which has same definition as reliability function
 - hazard function h(t) and cumulative hazard function H(t) even use same terminology, besides common mathematical definitions.

SURVIVAL ANALYSIS

- Advantages of survival analysis:
 -) more flexible, time-variant or covariates-dependent hazard functions
 - 2) built-in procedures to deal with censored events 3) multivariate failure beyond binary failure
 - 4) more effective modeling for dependent failure events though competing risks and shared frailty modeling
- Our focus is on the hazard functions in I)

CONSTANT HAZARD FUNCTION

- Simplest model: constant fail rate
 - Failures follow exponential distribution
 - Hazard function $h(t) = \lambda$
 - used in traditional reliability model (with constant fail rate) is not generally suitable

$$R(t) = e^{-\lambda t}$$

- strength
- weakness
- applications: RBD, FT, Markov Chain, Petri Net

COX PROP. HAZARDS MODEL

- "Fundamental Model of Survival Analysis"
- Hazard Function is a function of time t and covariate vector z:

$$\lambda(t,z) = \lambda_0(t)e^{Z\beta}$$

- Extensions of PHM: time-dependent covariates
 - unstratified PHM $\lambda[t;z(t)] = \lambda_0(t)e^{Z(t)eta}$
 - stratified PHM $\lambda_j[t; z(t)] = \lambda_{0j}(t)e^{Z(t)\beta}, \quad j = 1, 2, ..., q$

MODEL AND STATE CHANGES

- Different functionalities can have different fault descriptions
- Different functionalities can utilize different hazard functions
- Each functionality may change its fault description and/or hazard function in time

Figure 1. Thread Model State Machine

ADAPTATION

- Integral feature in any design for survivability
- Adaptation addresses
 - dynamics of changing Fault Descriptions Fi
 - different definitions of fault descriptions (active, imposed)

ADAPTATION

- Adaptation may be the result of diverse scenarios
 - The fault description is no longer valid due to specific event

e.g. intelligence suggests that authentication is broken

• The fault description of functionality should be strengthened by design

e.g. f_i is identified as weakest link

• Infrastructure that f_i depends on has changed e.g. may not support tolerance to certain fault types anymore

FAULT MODEL ADAPTATION

- Active Fault Description: F_i
 - fault model that system (functionality) currently subscribes to, i.e.,
 - the faults that f_i assumes to be able to tolerate or deal with
 - for *f_i* fault description *F_i* represents the active fault description
 - F_i is determined by system designer (designer of f_i)

FAULT MODEL ADAPTATION

- Imposed Fault Description: \hat{F}_i
 - the fault model the infrastructure of system imposes on f_i
 - encompasses those **fault types the system** (or application) **has to explicitly deal with by distinct mechanisms**
 - Example $\hat{F}_i = (b, s)$
 - for given infrastructure benign and symmetric faults are possible and theoretically unavoidable
 - note that no asymmetric faults are listed (there is no "a")
 - infrastructure is assumed to be capable of theoretically eliminating this fault type, e.g., broadcast network

EXAMPLETCP/IP

- I) Assume TCP/IP provides reliable transmission
 - W.r.t. infrastructure this leads to $\hat{F}_i = (s, a)$
 - there are no benign (omission) faults
 - value fault (s and a) cannot be resolved without explicit mechanisms
- 2) Now assume that TCP times out
 - Leads to $F_i = (b, s, a)$
 - benign fault was added

- Interesting case: authentication is compromised
 - introduced value faults (s,a)
 - explicit mechanisms need to be added
 - symmetric: N > 2s
 - asymmetric: N > 3a
 - not only requires higher degree of redundancy
 - but agreement algorithm

EXAMPLE

- Authentication example cont.
- System designer choices:
 - live with the risk of authentication compromises
 - pay the cost of module and message overhead
- But how high is that cost?
 - depends on desired s and a
 - in addition: common mode fault need to be addressed

DESIGN CHANGES

- Imposed fault description gives insight about what infrastructure cannot inherently deal with
 - allows for adaptation
- Authentication example
 - assume authentication may be compromised:

 $F_i = \hat{F}_i = (b, s, a)$

asymmetric faults are a problem!

 changing to broadcast protocol we can avoid asymmetrics

$$\hat{F}_i = (b,s)_{_{29}}$$

ADAPTIVE POLICIES

- Select the lowest overhead solution possible under a given threat level
- Similar to the "shifting gear" approaches used in agreement algorithms

INFRASTRUCTURE CHANGES

- What happens if infrastructure used by fi change?
 - Any changes to the imposed fault description?
 - Carefully analyze the implication of the changes
 - can be good or bad news
 - misjudging fault descriptions may render application non-survivable!

CONCLUSIONS

System Definition

- functionalities, active/imposed fault models
- System Analysis
 - Model Analysis (include UUUR)
 - Resilience based on active and imposed fault descriptions
 - Adaptation (functionalities and fault models)
 - different fault description
 - different hazard functions
 - dynamic fault descriptions and/or hazard functions