
© A. Krings 2014 CS448/548 Sequence 4

FAULT-TOLERANT
AGREEMENT

• Having discussed the issues of addressing malicious act in the
context of dependability, we will now look at a classic solution to
agreeing in the presents of faults:

	
 	
 	
 Byzantine Agreement

• This paper was not written with our interpretation of
survivability, but will a great starting point to discuss the strength
and weakness of agreement based solutions to survivability.

• The following set of slides is from the fault-tolerance course.

1

© A. Krings 2014 CS448/548 Sequence 4

 BYZANTINE GENERAL
PROBLEM

2

© A. Krings 2014 CS448/548 Sequence 4

BYZANTINE GENERAL PROBLEM
•Objective
• A) All loyal generals must decide on the same plan of action
• B) A “small” number of traitors cannot cause the loyal 	
generals

to adopt a “bad” plan.
•Types of agreement
• exact agreement
• approximate agreement

•Applications, e.g.
• agreement in the presence of faults
• event, clock synchronization

3

© A. Krings 2014 CS448/548 Sequence 4

BYZANTINE GENERAL PROBLEM
•Key to disagreement
• 1) Initial disagreement among loyal generals

• 2) Ability of traitor to send conflicting messages
• asymmetry

•Reduction of general problem to simplex problem
with 1 General and n-1 Lieutenants
•General gives order

• Loyal Lieutenants must take single action
4

© A. Krings 2014 CS448/548 Sequence 4

BGP: SIMPLEX
•Want

IC1: All loyal Lieutenants obey the same order
IC2: If the commanding General is loyal, the every loyal

Lieutenant obeys the order he sends
• IC1 & IC2 are called Interactive Consistency Conditions.

• If the General is loyal, then IC1 follows from IC2.
• However, the General need not be loyal.

• Any solution to the simplex problem will also work for
multiple-source problems.
• the ith General sends his value v(i) by using a solution to the BGP

to send the order “use v(i) as my value”, with the other Generals
acting as the lieutenants.

5

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
•Oral Message
• message whose contents are under the control of the sender

(possibly relays)
• Practical implication, sensor example
• General = sensor
• Lieutenants = processor redundantly reading sensor
• Initial disagreement
• time skew in reading, bad link to sensor
• analog - digital conversion error, any threshold function

• Asymmetry
• communication problem, noise, V-level, bit timing

6

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
•The Byzantine Generals Problem seems deceptively

simple, however
•no solution will work unless more than two-third of

the generals are loyal.
•Thus, there exists no 3-General solutions to the single

traitor problem using oral messages
•Assume the messages sent are
• A = Attack
• R = Retreat

7

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
 Case 1: Commander is traitor :

– commander is lying
– who does lieutenant 1 believe
– could pick default

General

lieutenant 1 lieutenant 2
R

A

A
R

(A,R)

8

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
 Case 2: Lieutenant 2 is traitor :

– lieutenant 2 is lying
– who does lieutenant 1 believe
– could pick default, but what if it is R

» then General has A and Lieutenant 1 has R !!!

General

lieutenant 1 lieutenant 2
(A,R)

AA

A

R

9

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
•Given case 1 and case 2, lieutenant 1 cannot differentiate

between both scenarios, i.e. the set of values lieutenant 1
has is (A,R).

• In general: Given m traitors, there exists no solution with
less than 3m+1 generals for the oral message scenario.

•Assumptions about Oral Messages
• every message that is sent is delivered correctly
• the receiver of a message knows who send it
• the absence of a message can be detected
• how realistic are these assumptions?

10

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
 General case:

– regroup generals
» n Albanian generals
» n/3 act as unit => 3 general Byzantine General Problem

lieut. lieut.

Gen.

m m

m

m

11

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION

Algorithm OM(0)
1) The commander sends his value to every lieutenant
2) Each lieutenant uses the value he receives from the commander, or uses the value

RETREAT if he receives no value

Algorithm OM(m), m>0
1) The commander sends his value to every lieutenant.
2) For each i, let vi be the value lieutenant i receives from the commander, or else be

RETREAT if he receives no value. Lieutenant i acts as the commander in Algorithm
OM(m-1) to send the value vi to each of the n-2 other lieutenants.

3) For each i, and each j != i , let vj be the value lieutenant i received from lieutenant j
in step 2) (using algorithm OM(m-1), or else RETREAT if he received no such value.
Lieutenant i uses the value

12

© A. Krings 2014 CS448/548 Sequence 4

BGP: ORAL MESSAGE SOLUTION
 OM(m) -- same thing, different wording

IF m = 0 THEN
	
 a) commander sends his value to all other (n-1) lieutenants.
 	
 b) lieutenant uses value received or default (i.e. RETREAT
	
 if no value was received).
ELSE
	
 a) each commander node sends value to all other (n-1) lieutenants
	
 b) let vi = value received by lieut. i (from commander OR default
	
 if there was no message)
 Lieut. i invokes OM(m-1) as commander, sending vi to other
 (n-2) lieutenants.
	
 c) let vji = value received from lieutenant j by lieutenant i.
	
 Each lieutenant i gets vi = maj(what everyone said j said in
 previous round, except j himself)

	

trust myself more than
what others say I said

13

© A. Krings 2014 CS448/548 Sequence 4

EXAMPLE N=4 => ONE TRAITOR

 procedure OM(1)
IF {not valid since m=1}
ELSE
	
 1) commander transmits to L1,L2,L3
	
 2) values are received by L1,L2,L3
	
 so lieuts call OM(0)

	
 each lieut has
	
 received 3 values
 (use majority)

procedure OM(0)
IF {m=0}

 1) each lieut sends value
to

 other 2 lieuts
ELSE {not valid}

14

© A. Krings 2014 CS448/548 Sequence 4

BGP EXAMPLE
 case 1: L3 is traitor

v0 = 1
each loyal L has vector
 110 or 111 => maj(1 1 0/1) = 1

 case 2: G is traitor
v0 => L1=1 L2=1 L3=0
L1 has 110
L2 has 110 maj() = 1
L3 has 011

G

L1

L2

L3

G

L1

L2

L3

15

© A. Krings 2014 CS448/548 Sequence 4

BGP WITH N =7

P0 P0

P1 P2 P3 P4 P5 P6

General sends message After first rebroadcast

16

© A. Krings 2014 CS448/548 Sequence 4

BGP WITH N =7

P0

P1 P2 P3 P4 P5 P6

Processor 2 has this tree

P2 P3 P4 P5 P6 P1 P2 P4 P5 P6 P1 P2 P3 P5 P6 P1 P2 P3 P4 P6 P1 P2 P3 P4 P5

17

© A. Krings 2014 CS448/548 Sequence 4

BGP WITH N =3M+1

18

© A. Krings 2014 CS448/548 Sequence 4

extra blank

19

© A. Krings 2014 CS448/548 Sequence 4

BGP WITH N =7

P0

P1 P2 P3 P4 P5 P6

P2 P3 P4 P5 P6 P1 P2 P4 P5 P6 P1 P2 P3 P5 P6 P1 P2 P3 P4 P6 P1 P2 P3 P4 P5

P0

P1 P2 P3 P4 P5 P6

P0

20

© A. Krings 2014 CS448/548 Sequence 4

SIGNED MESSAGES

•Traitors ability to lie makes Byzantine General
Problem so difficult.

• If we restrict this ability, then the problem becomes
easier

•Use authentication, i.e. allow generals to send
unforgeable signed messages.

21

© A. Krings 2014 CS448/548 Sequence 4

SIGNED MESSAGES

•Assumptions about Signed Messages
A1: every message that is sent is delivered correctly
A2: the receiver of a message knows who send it
A3: the absence of a message can be detected
A4: a loyal general’s signature cannot be forged, and any

alteration of the contents of his signed messages can be
detected. Anyone can verify the authenticity of a general’s
signature

Note: no assumptions are made about a traitor general, i.e.
a traitor can forge the signature of another traitor.

22

© A. Krings 2014 CS448/548 Sequence 4

SIGNED MESSAGES

•Signed message algorithm assumes a choice
function
• if a set V has one single element v, then choice(V) = v
• choice(Φ) = R, where Φ is the empty set
• RETREAT is default

• choice(Α,R) = R
• RETREAT is default

• set V is not a multiset (recall definition of a multiset)
• thus set V can have at most 2 elements, e.g. V = {A,R}.

23

© A. Krings 2014 CS448/548 Sequence 4

SIGNED MESSAGES

•Signing notation

• let v:i be the value v signed by general i

• let v:i:j be the message v:i counter-signed by general j

•each general i maintains his own set Vi containing all
orders he received

•Note: do not confuse the set Vi of orders the general
received with the set of all messages he received.
Many different messages may have the same order.

24

© A. Krings 2014 CS448/548 Sequence 4

BGP: SIGNED MESSAGE SOLUTION
SM(m) -- from Lam82

Initially Vi = Φ
1) The commander signs and sends his value to every lieutenant
2) For each i
	
 A) If lieutenant i receives a message of the form v:0 from the
 commander and he has not yet received any order, then
	
 	
 i) he lets Vi equal {v}
	
 	
 ii) he sends the message v:0:i to every other lieutenant
	
 B) If lieutenant i receives a message of the form v:0:j1:...:jk and

v is
 not in the set Vi, then
	
 	
 i) he adds v to Vi
	
 	
 ii) if k<m, then he sends the message v:0:j1:...:jk:i to every
	
 	
 lieutenant other than j1,...,jk
3) for each i: When lieutenant i will receive no more messages, he

obeys the order choice(Vi).
25

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)
 the SM(m) algorithm for signed messages works for

	
 i.e. want non faulty commander and at least one non
faulty lieutenant

 How does one know when one does not receive any
more messages?
– by missing message assumption A3, we can tell

when all messages have been received
– this can be implemented by using synchronized

rounds
 Now traitor can be detected!

– e.g. 2 correctly signed values => general is traitor
26

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)
 example, general is traitor

General

lieutenant 1 lieutenant 2

attack:0

attack:0:1

retreat:0

retreat:0:2

27

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)

 example, lieutenant 2 is traitor

General

lieutenant 1 lieutenant 2

attack:0

attack:0:1

retreat:0:2

attack:0

28

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)

•example:
•SM(0)
• general sends v:0 to all lieutenants
•processor i receives v:0 Vi={v}

•SM(1)
• each lieut. countersigns and rebroadcasts v:0
•processor i receives (v:0:1, v:0:2,..., v:0:(N-1))

29

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)
– case 1: commander loyal, lieutenant j = traitor

» all values except v:0:j are v

» processor j cannot tamper

– case 2: commander = traitor, => all lieut. loyal
» all lieutenants correctly forward what they received

 agreement: yes
 validity: N/A

30

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)
– case 1: commander loyal, 2 lieutenants are traitors

» want each loyal lieut to get V={v}
» round 0 => all loyal lieuts get v from commander
» other rounds:

 traitor cannot tamper
 => all messages are v or Φ

– case 2: commander traitor + 1 lieut. traitor
» round 0: all loyal lieuts receive v:0
» round 1:

 traitors send one value or Φ
» round 2:

 another exchange (in case traitor caused split in last
round)

 traitor still can not introduce new value
 => agreement: yes
 validity: N/A

31

© A. Krings 2014 CS448/548 Sequence 4

ALGORITHM SM(M)
•Cost of signed message
• encoding one bit in a code-word so faulty processor

cannot “stumble” on it.
• e.g.
• unreliability of the system FS = 10-10/h
• unreliability of single processor FP = 10-4/h
• want: Probability of randomly generated valid code word

• given 2i valid codewords, want (20+i) bits/signature
• e.g. Attack/Retrieve

=> 21
=> 21 bit signature

32

© A. Krings 2014 CS448/548 Sequence 4

AGREEMENT
• Important notes:
• there is no way to guarantee that different processors

will get the same value from a possibly faulty input
device, except having the processors communicate
among themselves to solve the Byz.Gen. Problem.
• faulty input device may provide meaningless input values
• all that Byz.Gen. solution can do is guarantee that all

processors use the same input value.
• if input is important, then use redundant input devices
• redundant inputs cannot achieve reliability. It is still

necessary to insure that all non-faulty processors use the
redundant data to produce the same output.

33

© A. Krings 2014 CS448/548 Sequence 4

AGREEMENT

• Implementing BGP is no problem
•The problem is implementing a message passing
system that yields respective assumptions, i.e.:

A1: every message that is sent is delivered correctly
A2: the receiver of a message knows who send it
A3: the absence of a message can be detected
A4: a loyal general’s signature cannot be forged, and

any alteration of the contents of his signed messages
can be detected. Anyone can verify the authenticity of
a general’s signature

34

