
CS448/548 Sequence 22

◆ What does one do when applications get large...?
– The results of a large computation is returned:

» Is that result correct?
» Are there computational errors?
» Has the result been altered by partial

manipulation?
» Has there been a massive attack?
» ...

Result Certification

1

CS448/548 Sequence 22

◆ How do you know whether the results of a large
computation have not been corrupted?

– This sequence is based on
» Krings Axel W., Jean-Louis Roch, and Samir Jafar, “Certification

of Large Distributed Computations with Task Dependencies in
Hostile Environments”, IEEE Electro/Information Technology
Conference , (EIT 2005), May 22-25, Lincoln, Nebraska, 2005

» Krings Axel, Jean-Louis Roch, Samir Jafar and Sebastien
Varrette, “A Probabilistic Approach for Task and Result
Certification of Large-scale Distributed Applications in Hostile
Environments”, Proc. European Grid Conference (EGC2005), in
LNCS 3470, Springer Verlag, February 14-16, 2005, Amsterdam,
Netherlands.

» Sarmenta,Luis F.G., Sabotage-ToleranceMechanisms for
Volunteer Computing Systems, Future Generation Computer
Systems, No. 4, Vol. 18, 2002.

Result Certification

2

CS448/548 Sequence 22

◆ Large-Scale Global Computing Systems

◆ Subject Application to Dependability Problems
– Can be addressed in the design

◆ Subject Application to Security Problems
– Requires solutions from the area of survivability, security,

fault-tolerance

Target Application

3

CS448/548 Sequence 22

◆ Large-scale distributed systems (e.g. Grid, P2P)
◆ Transparent allocation of resources

Global Computing Architecture

4

CS448/548 Sequence 22

◆ Computation intensive parallel application
– e.g. Medical (mammography comparison)

Typical Application

store image

5

CS448/548 Sequence 22

◆ In the Survivability Community our general computing
environment is referred to as

 Unbounded Environment

– Lack of physical / logical bound
– Lack of global administrative view of the system.

What risks are we subjecting our
applications to?

Unbounded Environments

6

CS448/548 Sequence 22

Nodes will fail or be compromised!

◆ Two important questions:
– How does one deal with the problem of node

failure?
» Fault-tolerance of “few” failures is built into

application

– Where is the threshold of failures an application
can tolerate?

» Does one know the number of failed nodes or
wrong results?

7

CS448/548 Sequence 22

Fault Models: Déjà vu
◆ Large computations subject to the same spectrum of faults:

◆ Fault-Behavior and Assumptions
– Independence of faults
– Common mode faults -> towards arbitrary faults!

◆ Fault Sources
– Trojan, virus, DOS, DDOS, etc.
– How do faults affect the overall system?

Fault

Benign Malicious

Symmetric Asymmetric

8

CS448/548 Sequence 22

◆ Attacks
– single nodes, difficult to solve with certification strategies
– solutions: e.g. intrusion detection systems (IDS)

◆ Massive Attacks
– affects large number of nodes
– may spread fast (worm, virus)
– may be coordinated (Trojan)

◆ Impact of Attacks
– attacks are likely to be widespread within neighborhood, e.g.

subnet

◆ Focus: massive attacks
– virus, trojan, DoS, etc.

Attacks and their impact

9

CS448/548 Sequence 22

◆ Key is Fault Threshold

◆ Two main aspects
1. Application has to be designed to tolerate a certain

number of faults
– implications of infrastructure size on reliability

– worst case series RBD

– use fault-tolerance algorithms
– e.g. fault-tolerant scheduling

2. One has to detect when fault threshold is surpassed.

How does the application survive?

10

CS448/548 Sequence 22

◆ What is “Certification” in this context?
– Mainly addressed for independent tasks

◆ Current approaches
– Voting
– Spot-checking
– Blacklisting
– Credibility-based fault-tolerance
– Partial execution on reliable resources (partitioning)
– Re-execution on reliable resources

◆ Certification of Computation

Certification Against Attacks

11

CS448/548 Sequence 22

◆ Compute each piece of work several times
◆ Decide which result to accept via voting

– example: modified eager scheduling work pool
» m=2, 2-first voting scheme
» expected redundancy:m/(1-f), where f is fault fraction

Majority Voting

12

VotingWorkPool
nextUnDoneWork

Work
0

m=2

Work
1

Work
2

Work
3

Done, res=GDone, res=A

pidres
P1A

pidres
P2B

pidres
P4Q

pidres
P1H

pidres
P2Z

pidres
P3G
P4GP3A

1.E-22
1.E-20
1.E-18
1.E-16
1.E-14
1.E-12
1.E-10
1.E-08
1.E-06
1.E-04
1.E-02
1.E+00

1 2 3 4 5 6
m

er
r

2.E-01 1.E-01 1.E-02
1.E-03 1.E-04

source: Sarmenta2002

CS448/548 Sequence 22

◆ Master randomly gives worker a spotter work
– result is already known
– if worker is caught with wrong result:

» master backtracks through all that worker’s results and invalidates
them

» master may also blacklist the exposed worker from future work

◆ Has much lower redundancy than voting
– Redundancy level is: 1/(1-q)
– q is the Bernoulli probability of being checked

◆ Useful if f is large, or maximum acceptable error rate is
not too small

Spot-Checking

13

CS448/548 Sequence 22

◆ Caught saboteurs are blacklisted
– not allowed to return to the worker pool
– assume saboteur receives n work objects (including spotters)
– then average final error rate is

– s is sabotage rate of a saboteur
– f is the fraction of the original population that were saboteurs
– (1 - qs)n is the probability of a saboteur surviving though n turns
– denominator represents fraction of original worker population

that survive to the end of the batch
– see Samenta 2002

Spot-Checking with Blacklisting

14

CS448/548 Sequence 22

◆ Could combine voting and spot-checking
– achieved error rates are orders-of-magnitude smaller

◆ More general: credibility-based fault-tolerance
– compute credibility of each tentative result as conditional

probability that the result is correct
» based on voting
» spot-checking
» other factors, e.g., some workers may be more trustworthy

Credibility-based Fault-Tolerance

15

CS448/548 Sequence 22

◆ What is a reliable resource?
◆ Use partitioning

– execute part of the work on reliable resource
– execute other parts on normal workers

Partial re-executions

16

CS448/548 Sequence 22

◆ Dataflow Graph
– G = (v,ε)

v finite set of vertices vi

ε set of edges ejk vertices vj , vk ∈ v

◆ Two kinds of tasks
Ti Tasks

in the traditional sense
Dj Data tasks

inputs and outputs

Execution Model: Definitions and
Assumptions

17

CS448/548 Sequence 22

◆ Checkpoint Server: Interface between two environments

General Execution Environment

Unreliable Application Execution Environment Reliable Resources
(Verifier)

18

CS448/548 Sequence 22

◆ GCP includes workers, checkpoint server and verifiers

Global Computing Platform (GCP)

19

CS448/548 Sequence 22

◆ Executions in unreliable environment
E execution of workload represented by G
i(T,E) input to T in execution E
o(T,E) output of T in execution E

◆ Executions in reliable environment: Verifier
Ê execution of workload G on Verifier
î(T,Ê) input to T in execution Ê
ô(T,Ê) output of T in execution Ê
ô(T,E) output of T with input from E executing on verifier

Note: notations ô(T,Ê) and ô(T,E) differ!

◆ If E = Ê then E is said to be “correct”
 otherwise E is said to have “failed”

Definitions

20

CS448/548 Sequence 22

◆ Monte Carlo certification:
– a randomized algorithm that

1. takes as input E and an arbitrary ε, 0 < ε ≤1
2. delivers

■ either CORRECT
■ or FAILED, together with a proof that E has failed

– certification is with error ε if the probability of
answer CORRECT, when E has actually failed, is
less than or equal to ε.

Probabilistic Certification

21

CS448/548 Sequence 22

◆ What does the certification really mean?
– what is the real interpretation of E = Ê
– connection between E = Ê and massive attack
– use E = Ê as a “tool” to determine if a massive attack has

occurred

◆ Monte Carlo certification against massive attacks
– number of tasks actually failed/attacked nF

– consider two scenarios
» nF = 0
» nF is large => massive attack

◆ Attack Ratio q

Probabilistic Certification

€

nq = nq" # ≤ nF
22

CS448/548 Sequence 22

◆ Algorithm MCT

1. Uniformly select one task T in G
we know input i(T,E) and output o(T,E) of T from checkpoint server

2. Re-execute T on verifier, using i(T,E) as inputs, to get output
ô(T,E)
If o(T,E) ≠ ô(T,E) return FAILED

– Return CORRECT

◆ Assume all tasks in G are independent
1. we always have i(T,E) = î(T,Ê)

Monte Carlo Test

23

CS448/548 Sequence 22

◆ Main Result
– Let E be an execution with n independent tasks and assume that E is

either correct or massively attacked with ratio q. For a given ε, the
number of independent executions of algorithm MCT necessary to
achieve a certification of E with probability of error less than or
equal to ε is

– Prob. that MCT selects a non-forged task is

– N independent applications of MCT results in ε ≤ (1 - q)N

Certification of Independent Tasks

€

N ≥
logε

log(1− q)
%

&
&

'

(
(

€

n − nF
n

≤1− q

24

CS448/548 Sequence 22

◆ Relationship between attack ratio and N

Certification of Independent Tasks

25

CS448/548 Sequence 22

◆ Relationship between certification error and N

Certification of Independent Tasks

26

CS448/548 Sequence 22

◆ What changes when one considers task
dependance?

Certification with task dependencies

27

CS448/548 Sequence 22

◆ What does a re-execution really tell us w.r.t. the result?
– One can only talk about outputs of tasks, not tasks!

– If o(T,E) ≠ ô(T,E) we know that an error has occurred

– If o(T,E) = ô(T,E) we cannot say much at all!

» for independent tasks this indicated a good task/result
» what do we know about the inputs?

■ in the presence of error propagation -- not much!
» if the verifier uses î(T,Ê) then o(T,E) = ô(T,Ê) indicates a good

result
but we don’t have Ê, (would require total re-execution on verifier)

Certification and Task Dependencies

28

CS448/548 Sequence 22

◆ The concept of “Initiator”

– o(T,E) = ô(T,E) is only useful if we know that the inputs are
correct

» this implies that T has no forged predecessors

– Definition:
An initiator is a falsifying task that has no falsifying

predecessors

– Worst case assumption is very conservative
» one still might detect a falsified non-initiator
» but there is not guarantee

Certification and Task Dependencies

29

CS448/548 Sequence 22

◆ Certification is now based on initiators
◆ Lemma 2
– The probability that MCT return FAILED is at least nI /n and the

probability it returns CORRECT is ≤ 1 - nI /n

◆ Lemma 3
– Let E be an execution of tasks with dependencies and assume that E is

either correct or massively attacked with ration q. For a given ε, the
number of independent executions of algorithm MCT necessary to
achieve a certification of E with probability of error less than or
equal to ε is

Certification and Task Dependencies

€

N ≥
logε

log(1− nI
n
)

%

&

&
&
&

'

(

(
(
(

30

CS448/548 Sequence 22

G≤(T) predecessor graph of T
V a set of tasks in G
G≤(V) predecessor graph of all tasks in V
k ≤ nF be the number of falsified tasks assumed
I(F) set of all initiators

◆ Minimum Number of Initiators

◆ Minimal Initiator Ratio

Certification and Task Dependencies

€

γV (k) =min |G≤(V)∩ I(F) |

€

ΓV (k) =
γV (k)
|G≤(V) |

31

CS448/548 Sequence 22

◆ The impact of graph G
– Knowing the graph, an attacker may attempt to minimize the

visibility of even a massive attack with ration q.
– What is the number of initiators one might have to expect in a

graph?
» Given height h (the length of the critical path) and

maximum out- degree d of a graph G, the minimum number
of initiators is

Certification and Task Dependencies

€

γG (nF) =
nF
1− dh

1− d
$

%
&

'

(
)

*

+

+
+
+
+

,

-

-
-
-
-

…

…

32

CS448/548 Sequence 22

◆ Algorithm EMCT
1. Uniformly select one task T in G

2. Re-execute all Tj in G≤(T), which have not been verified yet, with
input i(T,E) on a verifier and return FAILED if for any Tj we have
o(Tj,E) ≠ ô(Tj,E)

3. Return CORRECT

1. Behavior
1. disadvantage: the entire predecessor graph needs to be re-executed
2. however: the cost depends on the graph

1. luckily our application graphs are mainly trees

Extended Monte Carlo Test

33

CS448/548 Sequence 22

◆ Probability of error for single execution:
– worst case

» forged tasks are distributed to minimize the number of T whose G≤(T)
contain falsified tasks

» this is the case when the attack is biased towards leaf nodes

– error probability eE ≤ 1 - q

Analysis of EMCT

34

CS448/548 Sequence 22

◆ What is the cost (number of verifications) of a single
invocation:

– exact number of verifications is known only at run-time
» depends on which T is selected

 C = |G≤(T)|

– expected number of verifications:
» average number of tasks in a predecessor graph, over all Ti in G.

Analysis of EMCT

€

C =
|G≤(Ti) |Ti ∈G

∑
n

35

CS448/548 Sequence 22

◆ Results of independent tasks still hold,
– but N hides the cost of verification

» independent tasks: C = 1
» dependent tasks: C = |G≤(T)|

Analysis of EMCT

36

CS448/548 Sequence 22

◆ Considered
– General graphs
– Out-trees (application domain based on out/in-trees)

Results for MCT and EMTC

37

CS448/548 Sequence 22

For EMCT the entire predecessor graph had to be verified
To reduce verification cost two approaches are considered next:

1. Verification with fractions of G≤(T)
2. Verification with fixed number of tasks

Reducing the cost of verification

38

CS448/548 Sequence 22

◆ Given a subset V of tasks in G.

 What are the relationships between
 γV(k), γG(k) and nI with respect to k = nq or k = nF?

 By definition
 q ≤ nF / n and thus nq ≤ nF

 also
 nI ≤ nF

Relationship between quantities

39

CS448/548 Sequence 22

◆ With respect to nF we always have
 γV(nF) ≤ γG(nF) ≤ nI ≤ nF

– But where does nq fit into this inequality?
– The only certain relationship is nq ≤ nF

◆ With respect to nq we always have
 γV(nq) ≤ γG(nq) ≤ nq ≤ nF

– But where does nI fit into this inequality?
– The only certain relationship is γG(nq) ≤ nI ≤ nF

Relationship between quantities

40

CS448/548 Sequence 22

◆ With respect to nq ≤ nF we can compare directly

 γV(nq) ≤ γV(nF)
 γG(nq) ≤ γG(nF)

 Thus

 Γ V(nq) ≤ Γ V(nF)
 Γ G(nq) ≤ Γ G(nF)

Relationship between quantities

41

CS448/548 Sequence 22

◆ We will now modify algorithm EMCT so that only a fraction
of tasks in the predecessors are verified.

Verifying with fractions of G≤(T)

42

CS448/548 Sequence 22

◆ Algorithm EMCTα(E)

Verifying with fractions of G≤(T)

43

CS448/548 Sequence 22

◆ For Algorithm EMCTα(E)

Verifying with fractions of G≤(T)

44

CS448/548 Sequence 22

◆ For Algorithm EMCTα(E)

Verifying with fractions of G≤(T)

45

CS448/548 Sequence 22

◆ We will now modify algorithm EMCT so that only a fixed
number of tasks in the predecessors are verified.

– We limit our investigations to unity, i.e. one task is verified.

Verifying fixed numbers of tasks

46

CS448/548 Sequence 22

◆ Algorithm EMCT1(E)

Verifying fixed numbers of tasks

47

CS448/548 Sequence 22

◆ For Algorithm EMCT1(E)

Verifying fixed numbers of tasks

48

CS448/548 Sequence 22

◆ For Algorithm EMCT1(E)

Verifying fixed numbers of tasks

49

CS448/548 Sequence 22

◆ A balance between N and C

◆ Monte Carlo certification for a given ε:
1. a priori convergence

– determine up front how many times one has to verify
– one does not know which tasks are selected

2. run-time convergence
– run until certain ε is achieved
– take advantage of knowledge about task selected

3. for general graphs
4. for special graphs (e.g. out-trees)

The cost of certification

50

CS448/548 Sequence 22

◆ Number of effective initiators
– this is the # of initiators as perceived by the algorithm
– e.g. for EMCT an initiator in G≤(T) is always found, if it exists

Results for pathological cases

51

CS448/548 Sequence 22

◆ Probability of error induced by one invocation
– derived for each algorithm

Results for pathological cases

52

CS448/548 Sequence 22

◆ A priori convergence (N is determined a priori)
– cannot take advantage of run-time knowledge
– has to use ΓG(nq) rather than ΓT(nq)
– qe is the effective attack ratio

Results for pathological cases

€

N ≥
logε

log(1− qe)
%

&
&

'

(
(

53

CS448/548 Sequence 22

◆ Run-time convergence (N is determined at run-time)
– takes advantage of run-time knowledge
– initial verification εe = 1 - qe

– each verification εe = εe (1 - qe)
– untile εe ≤ ε

Results for pathological cases

€

N ≥
logε

log(1− qe)
%

&
&

'

(
(

54

CS448/548 Sequence 22

◆ Verification cost
– per invocation of the algorithm
– special case: out-tree

Results for pathological cases

55

CS448/548 Sequence 22

◆ Certification of large distributed applications
– hostile environments with no assumptions on fault model

◆ Considered task dependencies
– tasks or data may be manipulated
– allows for error propagation (much more difficult than independent

case)
– very difficult to speculate on the behavior of a falsified task

◆ Several probabilistic certification algorithms were introduced
– based on re-execution on verifier (reliable resource)
– inputs available from dataflow checkpoints

◆ Certification:
– very low probability of error can be achieved
– number of tasks to verify is relatively small, depending on graph
– relationship between attack rate and probability of error

Conclusions

56

