Result Certification

- What does one do when applications get large...?
 - The results of a large computation is returned:
 - » Is that result correct?
 - » Are there computational errors?
 - » Has the result been altered by partial manipulation?
 - » Has there been a massive attack?

» ...

CS448/548 Sequence 22

Result Certification

 How do you know whether the results of a large computation have not been corrupted?

1

- This sequence is based on
 - » Krings Axel W., Jean-Louis Roch, and Samir Jafar, "Certification of Large Distributed Computations with Task Dependencies in Hostile Environments", IEEE Electro/Information Technology Conference, (EIT 2005), May 22-25, Lincoln, Nebraska, 2005
 - » Krings Axel, Jean-Louis Roch, Samir Jafar and Sebastien Varrette, "A Probabilistic Approach for Task and Result Certification of Large-scale Distributed Applications in Hostile Environments", Proc. <u>European Grid Conference (EGC2005)</u>, in LNCS 3470, Springer Verlag, February 14-16, 2005, Amsterdam, Netherlands.
 - » Sarmenta, Luis F.G., Sabotage-ToleranceMechanisms for Volunteer Computing Systems, Future Generation Computer Systems, No. 4, Vol. 18, 2002.

Target Application

- Large-Scale Global Computing Systems
- Subject Application to Dependability Problems
 - Can be addressed in the design

Subject Application to Security Problems

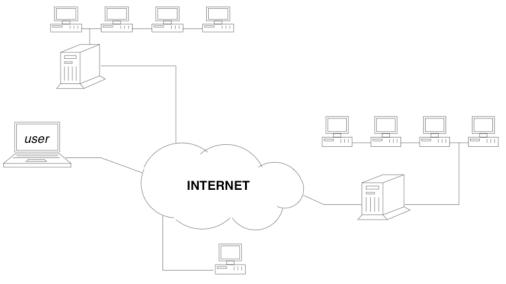
- Requires solutions from the area of survivability, security, fault-tolerance

CS448/548 Sequence 22

Global Computing Architecture

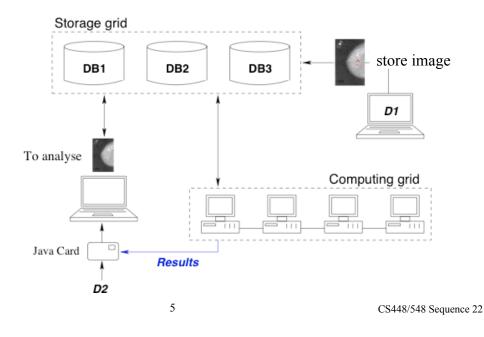
3

- Large-scale distributed systems (e.g. Grid, P2P)
- Transparent allocation of resources



Typical Application

- Computation intensive parallel application
 - e.g. Medical (mammography comparison)



Unbounded Environments

 In the Survivability Community our general computing environment is referred to as

Unbounded Environment

- Lack of physical / logical bound
- Lack of global administrative view of the system.

What risks are we subjecting our applications to?

Nodes will fail or be compromised!

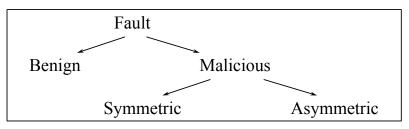
- Two important questions:
 - How does one deal with the problem of node failure?
 - » Fault-tolerance of "few" failures is built into application
 - Where is the threshold of failures an application can tolerate?
 - » Does one know the number of failed nodes or wrong results?

7

CS448/548 Sequence 22

Fault Models: Déjà vu

• Large computations subject to the same spectrum of faults:



- Fault-Behavior and Assumptions
 - Independence of faults
 - Common mode faults -> towards arbitrary faults!
- Fault Sources
 - Trojan, virus, DOS, DDOS, etc.
 - How do faults affect the overall system?

Attacks and their impact

- Attacks
 - single nodes, difficult to solve with certification strategies
 - solutions: e.g. intrusion detection systems (IDS)
- Massive Attacks
 - affects large number of nodes
 - may spread fast (worm, virus)
 - may be coordinated (Trojan)
- Impact of Attacks
 - attacks are likely to be widespread within neighborhood, e.g. subnet

9

- Focus: massive attacks
 - virus, trojan, DoS, etc.

CS448/548 Sequence 22

How does the application survive?

- Key is Fault Threshold
- Two main aspects
 - 1. Application has to be designed to tolerate a certain number of faults
 - implications of infrastructure size on reliability
 - worst case series RBD
 - use fault-tolerance algorithms
 - e.g. fault-tolerant scheduling
 - 2. One has to detect when fault threshold is surpassed.

Certification Against Attacks

• What is "Certification" in this context?

- Mainly addressed for independent tasks

- Current approaches
 - Voting
 - Spot-checking
 - Blacklisting
 - Credibility-based fault-tolerance
 - Partial execution on reliable resources (partitioning)
 - Re-execution on reliable resources

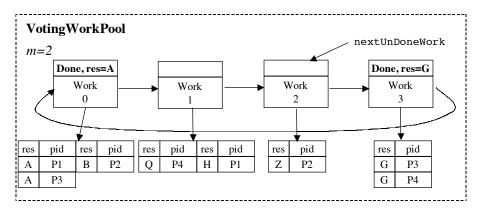
Certification of Computation

11

CS448/548 Sequence 22

Majority Voting

- Compute each piece of work several times
- Decide which result to accept via voting
 - example: modified *eager scheduling work pool*
 - » *m*=2, 2-first voting scheme
 - » expected redundancy:m/(1-f), where f is fault fraction



Spot-Checking

- Master randomly gives worker a spotter work
 - result is already known
 - if worker is caught with wrong result:
 - » master backtracks through all that worker's results and invalidates them
 - » master may also blacklist the exposed worker from future work
- Has much lower redundancy than voting
 - Redundancy level is: 1/(1-q)
 - -q is the Bernoulli probability of being checked
- Useful if f is large, or maximum acceptable error rate is not too small

13

CS448/548 Sequence 22

Spot-Checking with Blacklisting

Caught saboteurs are blacklisted

- not allowed to return to the worker pool
- assume saboteur receives *n* work objects (including spotters)
- then average final error rate is

$$\varepsilon_{\rm scbl}(q,n,f,s) = \frac{sf(1-qs)^n}{(1-f) + f(1-qs)^n}$$

- s is sabotage rate of a saboteur
- f is the fraction of the original population that were saboteurs
- $(1 qs)^n$ is the probability of a saboteur surviving though *n* turns
- denominator represents fraction of original worker population that survive to the end of the batch
- see Samenta 2002

Credibility-based Fault-Tolerance

- Could combine *voting* and *spot-checking*
 - achieved error rates are orders-of-magnitude smaller
- More general: credibility-based fault-tolerance
 - compute *credibility* of each tentative result as conditional probability that the result is correct
 - » based on voting
 - » spot-checking
 - » other factors, e.g., some workers may be more trustworthy

CS448/548 Sequence 22

Partial re-executions

- What is a *reliable* resource?
- Use partitioning
 - execute part of the work on reliable resource

15

- execute other parts on normal workers

Execution Model: Definitions and Assumptions

Dataflow Graph

 $- G = (\mathcal{V}, \mathcal{E})$

 \mathcal{V} finite set of vertices v_i

 $\boldsymbol{\varepsilon}$ set of edges e_{jk} vertices $v_j, v_k \in \boldsymbol{v}$

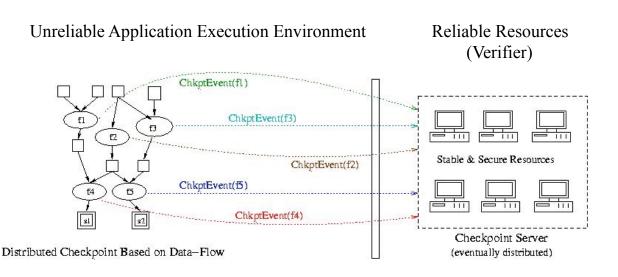
f1 f2 f3 f4 f5 f4 f5 f3 f4

CS448/548 Sequence 22

General Execution Environment

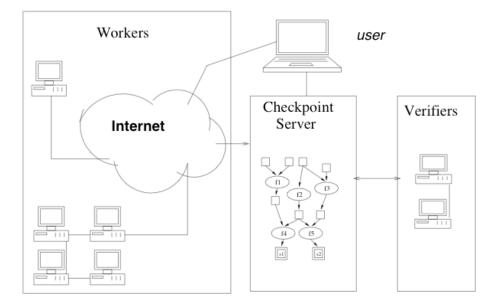
17

Checkpoint Server: Interface between two environments



Global Computing Platform (GCP)

• GCP includes workers, checkpoint server and verifiers



19

CS448/548 Sequence 22

Definitions

Executions in <u>unreliable</u> environment
 E execution of workload represented by *G i*(*T*,*E*) input to *T* in execution *E o*(*T*,*E*) output of *T* in execution *E*

• Executions in <u>reliable</u> environment: Verifier \hat{E} execution of workload *G* on Verifier $\hat{i}(T, \hat{E})$ input to *T* in execution \hat{E} $\hat{o}(T, \hat{E})$ output of *T* in execution \hat{E} $\hat{o}(T, E)$ output of *T* with input from *E* executing on verifier

Note: notations $\hat{o}(T, \hat{E})$ and $\hat{o}(T, E)$ differ!

• If $E = \hat{E}$ then *E* is said to be "correct" otherwise *E* is said to have "failed"

Probabilistic Certification

Monte Carlo certification:

- a randomized algorithm that
 - 1. takes as input *E* and an arbitrary ε , $0 < \varepsilon \le 1$
 - 2. delivers
 - either CORRECT
 - or FAILED, together with a proof that *E* has failed
- certification is with error ε if the probability of answer CORRECT, when *E* has actually failed, is less than or equal to ε .

21

CS448/548 Sequence 22

Probabilistic Certification

- What does the certification really mean?
 - what is the real interpretation of $E = \hat{E}$
 - connection between $E = \hat{E}$ and massive attack
 - use $E = \hat{E}$ as a "tool" to determine if a massive attack has occurred

Monte Carlo certification against massive attacks

- number of tasks actually failed/attacked n_F
- consider two scenarios
 - » $n_F = 0$
 - » n_F is large => massive attack

• Attack Ratio q $n_q = \lceil nq \rceil \le n_F$

Monte Carlo Test

- Algorithm MCT
 - 1. Uniformly select one task T in Gwe know input i(T,E) and output o(T,E) of T from checkpoint server
 - 2. Re-execute *T* on verifier, using *i*(*T*,*E*) as inputs, to get output ô(*T*,*E*)
 If o(*T*,*E*) ≠ ô(*T*,*E*) return FAILED
 - Return CORRECT
- Assume all tasks in *G* are independent
 - 1. we always have $i(T,E) = \hat{\iota}(T,\hat{E})$

23

CS448/548 Sequence 22

Certification of Independent Tasks

Main Result

- Let *E* be an execution with *n* independent tasks and assume that *E* is either correct or massively attacked with ratio *q*. For a given ε , the number of independent executions of algorithm MCT necessary to achieve a certification of *E* with probability of error less than or equal to ε is

$$N \ge \left[\frac{\log \varepsilon}{\log(1-q)}\right]$$

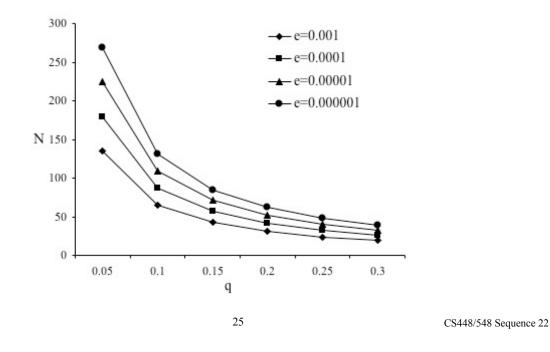
- Prob. that MCT selects a non-forged task is

$$\frac{n - n_F}{n} \le 1 - q$$
$$\varepsilon \le (1 - q)^N$$

- *N* independent applications of MCT results in

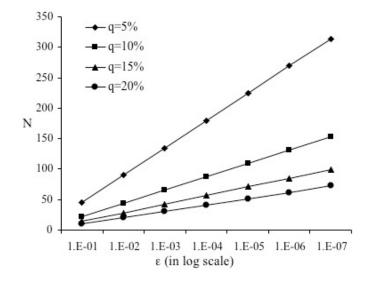
Certification of Independent Tasks

Relationship between attack ratio and N



Certification of Independent Tasks

Relationship between certification error and N



Certification with task dependencies

What changes when one considers task dependance?

CS448/548 Sequence 22

Certification and Task Dependencies

27

- What does a re-execution really tell us w.r.t. the result?
 One can only talk about outputs of tasks, not tasks!
 - If $o(T,E) \neq \hat{o}(T,E)$ we know that an error has occurred
 - If $o(T,E) = \hat{o}(T,E)$ we cannot say much at all!
 - » for independent tasks this indicated a good task/result
 - » what do we know about the inputs?
 - in the presence of error propagation -- not much!
 - » if the verifier uses $\hat{\iota}(T, \hat{E})$ then $o(T, E) = \hat{o}(T, \hat{E})$ indicates a good result

but we don't have \hat{E} , (would require total re-execution on verifier)

Certification and Task Dependencies

The concept of "Initiator"

- $o(T,E) = \hat{o}(T,E)$ is only useful if we know that the inputs are correct

» this implies that T has no forged predecessors

- Definition:
 An *initiator* is a falsifying task that has no falsifying predecessors
- Worst case assumption is very conservative
 - » one still might detect a falsified non-initiator
 - » but there is not guarantee

29

CS448/548 Sequence 22

Certification and Task Dependencies

- Certification is now based on initiators
- Lemma 2
- The probability that MCT return FAILED is at least n_I/n and the probability it returns CORRECT is $\leq 1 n_I/n$
- Lemma 3
- Let *E* be an execution of tasks with dependencies and assume that *E* is either correct or massively attacked with ration *q*. For a given ε , the number of independent executions of algorithm MCT necessary to achieve a certification of *E* with probability of error less than or equal to ε is

$$N \ge \left[\frac{\log \varepsilon}{\log(1 - \frac{n_I}{n})} \right]$$

Certification and Task Dependencies

$G \leq (T)$	predecessor graph of T
V	a set of tasks in G
$G^{\leq}(V)$	predecessor graph of all tasks in V
$k \leq n_F$	be the number of falsified tasks assumed
I(F)	set of all initiators

Minimum Number of Initiators

 $\gamma_V(k) = \min |G^{\leq}(V) \cap I(F)|$

Minimal Initiator Ratio

$$\Gamma_{V}(k) = \frac{\gamma_{V}(k)}{|G^{\leq}(V)|}$$

31

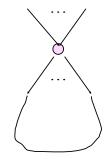
CS448/548 Sequence 22

Certification and Task Dependencies

• The impact of graph G

- Knowing the graph, an attacker may attempt to minimize the visibility of even a massive attack with ration *q*.
- What is the number of initiators one might have to expect in a graph?
 - » Given height h (the length of the critical path) and maximum out- degree d of a graph G, the minimum number of initiators is

$$\gamma_G(n_F) = \left[\frac{n_F}{\left(\frac{1-d^h}{1-d}\right)}\right]$$



Extended Monte Carlo Test

- Algorithm EMCT
 - 1. Uniformly select one task T in G
 - 2. Re-execute all T_j in $G^{\leq}(T)$, which have not been verified yet, with input i(T,E) on a verifier and return FAILED if for any T_j we have $o(T_j,E) \neq \hat{o}(T_j,E)$
 - 3. Return CORRECT
- 1. Behavior
 - 1. disadvantage: the entire predecessor graph needs to be re-executed
 - 2. however: the cost depends on the graph
 - 1. luckily our application graphs are mainly trees

33

CS448/548 Sequence 22

Analysis of EMCT

- Probability of error for single execution:
 - worst case
 - » forged tasks are distributed to minimize the number of T whose $G^{\leq}(T)$ contain falsified tasks
 - » this is the case when the attack is biased towards leaf nodes
 - error probability $e_E \leq l q$

Analysis of EMCT

- What is the cost (number of verifications) of a single invocation:
 - exact number of verifications is known only at run-time
 - » depends on which *T* is selected

$$C = |G \leq (T)|$$

- expected number of verifications:
- » average number of tasks in a predecessor graph, over all T_i in G.

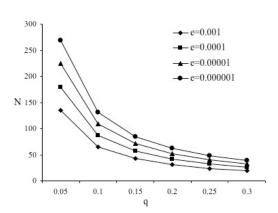
35

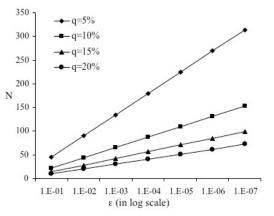
$$C = \frac{\sum_{T_i \in G} |G^{\leq}(T_i)|}{n}$$

CS448/548 Sequence 22

Analysis of EMCT

- Results of independent tasks still hold,
 - but *N* hides the cost of verification
 - » independent tasks: C = 1
 - » dependent tasks: $C = |G \leq (T)|$





Results for MCT and EMTC

Considered

- General graphs
- Out-trees (application domain based on out/in-trees)

Algorithm	MCT	EMCT
Number of effective initiators	$\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil$	n_q
Probability of error	$1 - \frac{\left\lceil \frac{n_q}{\left(\frac{1-dh}{1-d}\right)} \right\rceil}{n}$	1 - q
Verification cost: general G	1	O(n)
Verification cost: G is out-tree	1	$h - \log_d(n_v)$
Ave. # effective initiators, G is out-tree	$\left\lceil \frac{n_q}{\left(\frac{1-(h+2)d^{h+1}+(h+1)d^{h+2}}{(1-d)(1-d^{h}+1)}\right)} \right\rceil$	n_q

37

CS448/548 Sequence 22

Reducing the cost of verification

For EMCT the entire predecessor graph had to be verified To reduce verification cost two approaches are considered next:

- 1. Verification with fractions of $G^{\leq}(T)$
- 2. Verification with fixed number of tasks

Relationship between quantities

• Given a subset *V* of tasks in *G*.

What are the relationships between $\gamma_V(k)$, $\gamma_G(k)$ and n_I with respect to $k = n_q$ or $k = n_F$?

By definition

 $q \le n_F / n$ and thus $n_q \le n_F$ also

$$n_I \le n_F$$

CS448/548 Sequence 22

Relationship between quantities

39

• With respect to n_F we always have

 $\gamma_{\rm V}(n_F) \leq \gamma_{\rm G}(n_F) \leq n_I \leq n_F$

- But where does n_q fit into this inequality?
- The only certain relationship is $n_q \le n_F$

• With respect to n_q we always have $\gamma_V(n_q) \le \gamma_G(n_q) \le n_q \le n_F$

- But where does n_I fit into this inequality?
- The only certain relationship is $\gamma_G(n_q) \le n_I \le n_F$

Relationship between quantities

• With respect to $n_q \le n_F$ we can compare directly

$$\begin{aligned} \gamma_{\mathrm{V}}(n_q) &\leq \gamma_{\mathrm{V}}(n_F) \\ \gamma_{\mathrm{G}}(n_q) &\leq \gamma_{\mathrm{G}}(n_F) \end{aligned}$$

Thus

41

CS448/548 Sequence 22

Verifying with fractions of $G^{\leq}(T)$

• We will now modify algorithm EMCT so that only a fraction of tasks in the predecessors are verified.

Verifying with fractions of $G^{\leq}(T)$

- Algorithm EMCT $\alpha(E)$
 - 1. Uniformly choose one task T in G.
 - 2. Uniformly select $n_{\alpha} = \lceil \alpha | G^{\leq}(T) | \rceil$ tasks in $G^{\leq}(T)$ and let this set be denoted by A. If for any $T_j \in A$, that has not been verified yet, re-execution on a verifier results in $\hat{o}(T_j, E) \neq o(T_j, E)$ then return FAILED.
 - 3. Return CORRECT.

43

CS448/548 Sequence 22

Verifying with fractions of $G^{\leq}(T)$

• For Algorithm EMCT $\alpha(E)$

Lemma 1 Let T be a task randomly chosen by $EMCT_{\alpha}(E)$. Then the probability of error, e_{α} , when $EMCT_{\alpha}(E)$ returns CORRECT is given by

$$e_{\alpha} \leq \begin{cases} (1 - q\alpha\Gamma_{T}(n_{q})) & \text{for} \quad 0 < \alpha \leq 1 - \Gamma_{T}(n_{q}) \\ (1 - q) & \text{otherwise.} \end{cases}$$

Verifying with fractions of $G^{\leq}(T)$

• For Algorithm EMCT $\alpha(E)$

Theorem 1 Let E be an execution with dependencies that is either correct or massively attacked with ratio q. Given ϵ and $0 < \alpha \leq 1$, N independent invocations of Algorithm $EMCT_{\alpha}(E)$ provide a certification with error probability

 $\epsilon \leq \begin{cases} (1 - q\alpha \Gamma_G(n_q))^N & for \ 0 < \alpha \leq 1 - \Gamma_T(n_q) \\ (1 - q)^N & otherwise. \end{cases}$

45

CS448/548 Sequence 22

Verifying fixed numbers of tasks

- We will now modify algorithm EMCT so that only a fixed number of tasks in the predecessors are verified.
 - We limit our investigations to unity, i.e. one task is verified.

Verifying fixed numbers of tasks

- Algorithm EMCT¹(*E*)
 - 1. Uniformly choose one task T in G.
 - 2. Uniformly select a single T_j in $G^{\leq}(T)$. If reexecution of T_j on a verifier results in $\hat{o}(T_j, E) \neq o(T_j, E)$ then return FAILED.
 - 3. Return CORRECT.

CS448/548 Sequence 22

Verifying fixed numbers of tasks

47

• For Algorithm EMCT¹(*E*)

Lemma 2 Let T be a task randomly chosen by $EMCT^{1}(E)$ and let $V = G^{\leq}(T)$. Then the probability of error, e_{1} , when $EMCT^{1}(E)$ returns CORRECT is given by

$$e_1 \le 1 - \frac{n_F}{n} \Gamma_T(n_F) \le 1 - q \Gamma_T(n_q)$$

Verifying fixed numbers of tasks

• For Algorithm EMCT¹(*E*)

Theorem 2 Let E be an execution with dependencies that is either correct or massively attacked with ratio q. Given ϵ then N independent invocations of Algorithm $EMCT^{1}(E)$ provide a certification with error probability

$$\epsilon \le (1 - q\Gamma_G(n_q))^N.$$

49

CS448/548 Sequence 22

The cost of certification

- A balance between N and C
- Monte Carlo certification for a given ε:
 - 1. a priori convergence
 - determine up front how many times one has to verify
 - one does not know which tasks are selected
 - 2. run-time convergence
 - run until certain ε is achieved
 - take advantage of knowledge about task selected
 - 3. for general graphs
 - 4. for special graphs (e.g. out-trees)

Results for pathological cases

• Number of effective initiators

- this is the # of initiators as perceived by the algorithm
- e.g. for EMCT an initiator in $G^{\leq}(T)$ is <u>always</u> found, if it exists

	MCT(E) [7]	EMCT(E) [7]	$EMCT_{\alpha}(E)$	$EMCT^{1}(E)$
# of effective initiators	$\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil$	n_q	$n_q \alpha \Gamma_T(n_q)$ or n_q	$n_q \Gamma_T(n_q)$
Probability of error	$1 - \frac{\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \rceil}{n}$	1-q	$1 - q \alpha \Gamma_T(n_q) \text{ or } 1 - q$	$1 - q\Gamma_T(n_q)$
A priori convergence	$\frac{\log \epsilon}{\log(1 - \frac{\left\lceil \frac{n_q}{\left(\frac{1-dh}{1-d}\right)} \right\rceil}{r})}$	$\frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1-q\alpha\Gamma_G(n_q))}$ or $\frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1 - q\Gamma_G(n_q))}$
q_e a priori	$\frac{\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil}{n}$	q	$q \alpha \Gamma_G(n_q)$ or q	$q\Gamma_G(n_q)$
q_e run-time	$\frac{\left\lceil \frac{hq}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil}{n}$	q	$q lpha \Gamma_T(n_q)$ or q	$q\Gamma_T(n_q)$
Verification cost (exact)	1	$ G^{\leq}(T) $	$\lceil \alpha G^{\leq}(T) \rceil$	1
Max. cost (out-tree)	1	h	αh	1

51

CS448/548 Sequence 22

Results for pathological cases

- Probability of error induced by one invocation
 - derived for each algorithm

	MCT(E) [7]	EMCT(E) [7]	$EMCT_{\alpha}(E)$	$EMCT^{1}(E)$
# of effective initiators	$\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil$	n_q	$n_q \alpha \Gamma_T(n_q)$ or n_q	$n_q \Gamma_T(n_q)$
Probability of error	$1 - \frac{\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \rceil}{n}$	1 - q	$1 - q \alpha \Gamma_T(n_q)$ or $1 - q$	$1 - q\Gamma_T(n_q)$
A priori convergence	$\frac{\log \epsilon}{\log(1 - \frac{\left\lceil \frac{n_q}{\left(\frac{1-dh}{1-d}\right)} \right\rceil}{n}})$	$\frac{\log \epsilon}{\log(1\!-\!q)}$	$\frac{\log \epsilon}{\log(1-q\alpha\Gamma_G(n_q))}$ or $\frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1 - q\Gamma_G(n_q))}$
q_e a priori	$\frac{\left\lceil \frac{n_q}{\left(\frac{1-dh}{1-d}\right)} \right\rceil}{\frac{n_q}{\left(\frac{1-dh}{1-d}\right)}}$	q	$q lpha \Gamma_G(n_q)$ or q	$q\Gamma_G(n_q)$
q_e run-time	$\frac{\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil}{n}$	q	$q lpha \Gamma_T(n_q)$ or q	$q\Gamma_T(n_q)$
Verification cost (exact)	1	$ G^{\leq}(T) $	$\lceil \alpha G^{\leq}(T) \rceil$	1
Max. cost (out-tree)	1	h	αh	1

Results for pathological cases

• A priori convergence (*N* is determined a priori)

- cannot take advantage of run-time knowledge
- has to use $\Gamma_G(n_q)$ rather than $\Gamma_T(n_q)$
- q_e is the effective attack ratio

$$N \ge \left[\frac{\log \varepsilon}{\log(1 - q_e)}\right]$$

	MCT(E) [7]	EMCT(E) [7]	$EMCT_{\alpha}(E)$	$EMCT^{1}(E)$
# of effective initiators	$\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil$	n_q	$n_q \alpha \Gamma_T(n_q)$ or n_q	$n_q \Gamma_T(n_q)$
Probability of error	$1 - \frac{\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \rceil}{n}$	1 - q	$1 - q \alpha \Gamma_T(n_q) \text{ or } 1 - q$	$1 - q\Gamma_T(n_q)$
A priori convergence	$\frac{\log \epsilon}{\log(1 - \frac{\lceil \frac{n_q}{\left(\frac{1-dh}{1-d}\right)}\rceil}{r})}$	$\frac{\log \epsilon}{\log(1\!-\!q)}$	$\frac{\log \epsilon}{\log(1-q\alpha\Gamma_G(n_q))}$ or $\frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1 - q\Gamma_G(n_q))}$
q_e a priori	$\frac{\left\lceil \frac{nq^{h}}{\left(\frac{1-d^{h}}{1-d}\right)} \right\rceil}{n}$	q	$q lpha \Gamma_G(n_q)$ or q	$q\Gamma_G(n_q)$
q_e run-time	$\frac{\left\lceil \frac{hq}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil}{n}$	q	$q \alpha \Gamma_T(n_q)$ or q	$q\Gamma_T(n_q)$
Verification cost (exact)	1	$ G^{\leq}(T) $	$\lceil \alpha G^{\leq}(T) \rceil$	1
Max. cost (out-tree)	1	h	αh	1

53

CS448/548 Sequence 22

 $N \ge \left[\frac{\log \varepsilon}{\log(1 - q_e)}\right]$

Results for pathological cases

- Run-time convergence (*N* is determined at run-time)
 - takes advantage of run-time knowledge

 $\varepsilon_e \leq \varepsilon$

- initial verification $\varepsilon_e = 1 q_e$
- each verification $\varepsilon_e = \varepsilon_e (1 q_e)$

	MCT(E) [7]	EMCT(E) [7]	$EMCT_{\alpha}(E)$	$EMCT^{1}(E)$
	()[]			()
# of effective initiators	$\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil$	n_q	$n_q \alpha \Gamma_T(n_q)$ or n_q	$n_q \Gamma_T(n_q)$
	$\left\lceil \frac{n_q}{\left(1-d^h\right)} \right\rceil$			
Probability of error	$1 - \frac{\left(1 - d\right)}{n}$	1-q	$1 - q \alpha \Gamma_T(n_q)$ or $1 - q$	$1 - q\Gamma_T(n_q)$
A priori convergence	$\log \epsilon$	$\frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1-q\alpha\Gamma_G(n_q))} \text{ or } \frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1 - q\Gamma_G(n_q))}$
	$\log(1 - \frac{\left(\frac{1-d^h}{1-d}\right)}{n})$	8(- 1)		
q_e a priori	$\frac{\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil}{n}$	q	$q lpha \Gamma_G(n_q)$ or q	$q\Gamma_G(n_q)$
	$\left\lceil \frac{n_q}{\left(1-d^h\right)} \right\rceil$			
q_e run-time	$\frac{1-d}{n}$	q	$q lpha \Gamma_T(n_q)$ or q	$q\Gamma_T(n_q)$
Verification cost (exact)	1	$ G^{\leq}(T) $	$\lceil \alpha G^{\leq}(T) \rceil$	1
Max. cost (out-tree)	1	h	αh	1

Results for pathological cases

- Verification cost
 - per invocation of the algorithm
 - special case: out-tree

	MCT(E) [7]	EMCT(E) [7]	$EMCT_{\alpha}(E)$	$EMCT^{1}(E)$
# of effective initiators	$\left\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil$	n_q	$n_q \alpha \Gamma_T(n_q)$ or n_q	$n_q \Gamma_T(n_q)$
Probability of error	$1 - \frac{\lceil \frac{n_q}{\left(\frac{1-d^h}{1-d}\right)} \rceil}{n}$	1 - q	$1 - q \alpha \Gamma_T(n_q)$ or $1 - q$	$1 - q\Gamma_T(n_q)$
A priori convergence	$\frac{\log \epsilon}{\log(1 - \frac{\lceil \frac{n_q}{\left(\frac{1-dh}{1-d}\right)}\rceil}{\rceil})}$	$\frac{\log \epsilon}{\log(1\!-\!q)}$	$\frac{\log \epsilon}{\log(1-q\alpha\Gamma_G(n_q))}$ or $\frac{\log \epsilon}{\log(1-q)}$	$\frac{\log \epsilon}{\log(1 - q\Gamma_G(n_q))}$
q_e a priori	$\frac{\left\lceil \frac{nq^{h}}{\left(\frac{1-d^{h}}{1-d}\right)} \right\rceil}{n}$	q	$q \alpha \Gamma_G(n_q)$ or q	$q\Gamma_G(n_q)$
q_e run-time	$\frac{\left\lceil \frac{nq}{\left(\frac{1-d^h}{1-d}\right)} \right\rceil}{n}$	q	$q lpha \Gamma_T(n_q)$ or q	$q\Gamma_T(n_q)$
Verification cost (exact)	1	$ G^{\leq}(T) $	$\lceil \alpha G^{\leq}(T) \rceil$	1
Max. cost (out-tree)	1	h	αh	1

55

CS448/548 Sequence 22

Conclusions

- Certification of large distributed applications
 - hostile environments with no assumptions on fault model
- Considered task dependencies
 - tasks or data may be manipulated
 - allows for error propagation (much more difficult than independent case)
 - very difficult to speculate on the behavior of a falsified task
- Several probabilistic certification algorithms were introduced
 - based on re-execution on verifier (reliable resource)
 - inputs available from dataflow checkpoints
- Certification:
 - very low probability of error can be achieved
 - number of tasks to verify is relatively small, depending on graph
 - relationship between attack rate and probability of error