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◆ What does one do when applications get large...? 
– The results of a large computation is returned:   

» Is that result correct? 
» Are there computational errors? 
» Has the result been altered by partial 

manipulation? 
» Has there been a massive attack? 
» ...

Result Certification
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◆ How do you know whether the results of a large 
computation have not been corrupted? 

– This sequence is based on 
» Krings Axel W., Jean-Louis Roch, and Samir Jafar, “Certification 

of Large Distributed Computations with Task Dependencies in 
Hostile Environments”, IEEE Electro/Information Technology 
Conference , (EIT 2005), May 22-25, Lincoln, Nebraska, 2005 

» Krings Axel, Jean-Louis Roch, Samir Jafar and Sebastien 
Varrette, “A Probabilistic Approach for Task and Result 
Certification of Large-scale Distributed Applications in Hostile 
Environments”, Proc. European Grid Conference (EGC2005), in 
LNCS 3470, Springer Verlag, February 14-16, 2005, Amsterdam, 
Netherlands. 

» Sarmenta,Luis F.G., Sabotage-ToleranceMechanisms for 
Volunteer Computing Systems, Future Generation Computer 
Systems, No. 4, Vol. 18, 2002.

Result Certification
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◆ Large-Scale Global Computing Systems 

◆ Subject Application to Dependability Problems 
– Can be addressed in the design 

◆ Subject Application to Security Problems 
– Requires solutions from the area of survivability, security, 

fault-tolerance

Target Application
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◆ Large-scale distributed systems (e.g. Grid, P2P) 
◆ Transparent allocation of resources

Global Computing Architecture
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◆ Computation intensive parallel application 
– e.g. Medical (mammography comparison)

Typical Application

store image
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◆ In the Survivability Community our general computing 
environment is referred to as 

                         Unbounded Environment 

– Lack of physical / logical bound 
– Lack of global administrative view of the system. 

What risks are we subjecting our  
applications to?

Unbounded Environments
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Nodes will fail or be compromised!

◆ Two important questions: 
– How does one deal with the problem of node 

failure? 
» Fault-tolerance of “few” failures is built into 

application 

– Where is the threshold of failures an application 
can tolerate? 

» Does one know the number of failed nodes or 
wrong results?
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Fault Models:  Déjà vu  
◆ Large computations subject to the same spectrum of faults: 

◆ Fault-Behavior and Assumptions 
– Independence of faults 
– Common mode faults  ->  towards arbitrary faults! 

◆ Fault Sources 
– Trojan, virus, DOS, DDOS, etc. 
– How do faults affect the overall system? 

Fault

Benign Malicious

Symmetric Asymmetric
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◆ Attacks 
– single nodes, difficult to solve with certification strategies 
– solutions: e.g. intrusion detection systems (IDS) 

◆ Massive Attacks 
– affects large number of nodes 
– may spread fast (worm, virus) 
– may be coordinated (Trojan) 

◆ Impact of Attacks 
– attacks are likely to be widespread within neighborhood, e.g. 

subnet 

◆ Focus: massive attacks 
– virus, trojan, DoS, etc.

Attacks and their impact
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◆ Key is Fault Threshold 

◆ Two main aspects 
1. Application has to be designed to tolerate a certain 

number of faults 
– implications of infrastructure size on reliability 

– worst case series RBD 

– use fault-tolerance algorithms 
– e.g. fault-tolerant scheduling 

2. One has to detect when fault threshold is surpassed.

How does the application survive?
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◆ What is “Certification” in this context? 
– Mainly addressed for independent tasks 

◆ Current approaches 
– Voting 
– Spot-checking 
– Blacklisting 
– Credibility-based fault-tolerance 
– Partial execution on reliable resources (partitioning) 
– Re-execution on reliable resources 

◆ Certification of Computation

Certification Against Attacks

11

CS448/548 Sequence 22

◆ Compute each piece of work several times 
◆ Decide which result to accept via voting 

– example: modified eager scheduling work pool 
» m=2,  2-first voting scheme 
» expected redundancy:m/(1-f),  where f is fault fraction

Majority Voting 
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◆ Master randomly gives worker a spotter work 
– result is already known 
– if worker is caught with wrong result: 

» master backtracks through all that worker’s results and invalidates 
them 

» master may also blacklist the exposed worker from future work 

◆ Has much lower redundancy than voting 
– Redundancy level is:  1/(1-q) 
– q is the Bernoulli probability of being checked 

◆ Useful if f is large, or maximum acceptable error rate is 
not too small

Spot-Checking

13

CS448/548 Sequence 22

◆ Caught saboteurs are blacklisted 
– not allowed to return to the worker pool 
– assume saboteur receives n work objects (including spotters) 
– then average final error rate is 

– s is sabotage rate of a saboteur 
– f  is the fraction of the original population that were saboteurs 
– (1 - qs)n  is the probability of a saboteur surviving though n turns 
– denominator represents fraction of original worker population 

that survive to the end of the batch 
– see Samenta 2002

Spot-Checking with Blacklisting
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◆ Could combine voting and spot-checking 
– achieved error rates are orders-of-magnitude smaller  

◆ More general: credibility-based fault-tolerance 
– compute credibility of each tentative result as conditional 

probability that the result is correct 
» based on voting 
» spot-checking 
» other factors, e.g., some workers may be more trustworthy

Credibility-based Fault-Tolerance
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◆ What is a reliable resource? 
◆ Use partitioning 

– execute part of the work on reliable resource 
– execute other parts on normal workers

Partial re-executions
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◆ Dataflow Graph 
– G = (v,ε) 

v finite set of vertices vi 

ε set of edges ejk  vertices vj , vk ∈ v 

◆ Two kinds of tasks 
Ti     Tasks  

in the traditional sense 
Dj    Data tasks 

inputs and outputs

Execution Model: Definitions and 
Assumptions
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◆ Checkpoint Server:  Interface between two environments

General Execution Environment

Unreliable Application Execution Environment Reliable Resources 
(Verifier)

18



CS448/548 Sequence 22

◆ GCP includes workers, checkpoint server and verifiers

Global Computing Platform (GCP)
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◆ Executions in unreliable environment 
E          execution of workload represented by G 
i(T,E)   input to T in execution E 
o(T,E)  output of T in execution E 

◆ Executions in reliable environment: Verifier 
Ê          execution of workload G on Verifier 
î(T,Ê)   input to T in execution Ê 
ô(T,Ê)  output of T in execution Ê 
ô(T,E)  output of T with input from E executing on verifier 

Note: notations ô(T,Ê)  and ô(T,E)  differ!  

◆ If E = Ê   then E is said to be “correct” 
                      otherwise E is said to have “failed”

Definitions
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◆ Monte Carlo certification:  
– a randomized algorithm that  

1. takes as input E and an arbitrary ε,     0 < ε ≤1 
2. delivers  

■ either CORRECT 
■ or FAILED, together with a proof that E has failed 

– certification is with error ε if the probability of 
answer CORRECT, when E has actually failed, is 
less than or equal to ε.

Probabilistic Certification
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◆ What does the certification really mean? 
– what is the real interpretation of E = Ê  
– connection between E = Ê and massive attack 
– use E = Ê as a “tool” to determine if a massive attack has 

occurred 

◆ Monte Carlo certification against massive attacks 
– number of tasks actually failed/attacked  nF  

– consider two scenarios 
»  nF  = 0 
»  nF  is large  => massive attack 

◆ Attack Ratio q

Probabilistic Certification

€ 

nq = nq" # ≤ nF
22
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◆ Algorithm MCT 

1. Uniformly select one task T in G   
we know input i(T,E) and output o(T,E) of T from checkpoint server  

2. Re-execute T on verifier, using i(T,E) as inputs, to get output 
ô(T,E)  
If o(T,E) ≠ ô(T,E) return FAILED 

– Return CORRECT 

◆ Assume all tasks in G are independent  
1. we always have i(T,E) = î(T,Ê) 

Monte Carlo Test
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◆ Main Result 
– Let E be an execution with n independent tasks and assume that E is 

either correct or massively attacked with ratio q.  For a given ε, the 
number of independent executions of algorithm MCT necessary to 
achieve a certification of E with probability of error less than or 
equal to ε is 

– Prob. that MCT selects a non-forged task is  

– N independent applications of MCT results in      ε ≤ (1 - q)N

Certification of Independent Tasks
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◆ Relationship between attack ratio and N

Certification of Independent Tasks
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◆ Relationship between certification error and N

Certification of Independent Tasks
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◆ What changes when one considers task 
dependance?

Certification with task dependencies
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◆ What does a re-execution really tell us w.r.t. the result? 
– One can only talk about outputs of tasks, not tasks! 

– If o(T,E) ≠ ô(T,E)  we know that an error has occurred 

– If o(T,E) = ô(T,E)  we cannot say much at all!  

» for independent tasks this indicated a good task/result 
» what do we know about the inputs? 

■ in the presence of error propagation -- not much! 
» if the verifier uses î(T,Ê)  then o(T,E) = ô(T,Ê) indicates a good 

result 
but we don’t have Ê,  (would require total re-execution on verifier)

Certification and Task Dependencies
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◆ The concept of “Initiator” 

– o(T,E) = ô(T,E)  is only useful if we know that the inputs are 
correct 

» this implies that T has no forged predecessors 

– Definition: 
An initiator is a falsifying task that has no falsifying 

predecessors 

– Worst case assumption is very conservative 
» one still might detect a falsified non-initiator 
» but there is not guarantee

Certification and Task Dependencies
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◆ Certification is now based on initiators  
◆ Lemma 2 
– The probability that MCT return FAILED is at least nI /n and the 

probability it returns CORRECT is   ≤   1 - nI /n  

◆ Lemma 3 
– Let E be an execution of tasks with dependencies and assume that E is 

either correct or massively attacked with ration q.  For a given ε, the 
number of independent executions of algorithm MCT necessary to 
achieve a certification of E with probability of error less than or 
equal to ε is

Certification and Task Dependencies
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G≤(T) predecessor graph of T  
V    a set of tasks in G 
G≤(V) predecessor graph of all tasks in V  
k ≤ nF  be the number of falsified tasks assumed 
I(F)  set of all initiators  

◆ Minimum Number of Initiators  

◆ Minimal Initiator Ratio

Certification and Task Dependencies

€ 

γV (k) =min |G≤(V )∩ I(F) |

€ 

ΓV (k) =
γV (k)
|G≤(V ) |
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◆ The impact of graph G 
– Knowing the graph, an attacker may attempt to minimize the 

visibility of even a massive attack with ration q. 
– What is the number of initiators one might have to expect in a 

graph? 
» Given height h (the length of the critical path) and 

maximum out- degree d of a graph G, the minimum number 
of initiators is

Certification and Task Dependencies
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◆ Algorithm EMCT 
1. Uniformly select one task T in G   

2. Re-execute all Tj in G≤(T), which have not been verified yet, with 
input i(T,E) on a verifier and  return FAILED if for any Tj we have 
o(Tj,E) ≠ ô(Tj,E)  

3. Return CORRECT 

1. Behavior 
1. disadvantage: the entire predecessor graph needs to be re-executed 
2. however: the cost depends on the graph 

1. luckily our application graphs are mainly trees

Extended Monte Carlo Test
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◆ Probability of error for single execution: 
– worst case 

» forged tasks are distributed to minimize the number of T whose G≤(T) 
contain falsified tasks 

» this is the case when the attack is biased towards leaf nodes 

– error probability  eE ≤ 1 - q

Analysis of EMCT
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◆ What is the cost (number of verifications) of a single 
invocation: 

– exact number of verifications is known only at run-time 
» depends on which T is selected  

                     C = |G≤(T)|  

– expected number of verifications: 
» average number of tasks in a predecessor graph, over all Ti  in G.

Analysis of EMCT

€ 

C =
|G≤(Ti) |Ti ∈G

∑
n
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◆ Results of independent tasks still hold, 
– but N hides the cost of verification 

» independent tasks:  C = 1 
» dependent tasks: C =  |G≤(T)|

Analysis of EMCT
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◆ Considered 
– General graphs 
– Out-trees  (application domain based on out/in-trees)

Results for MCT and EMTC
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For EMCT the entire predecessor graph had to be verified 
To reduce verification cost two approaches are considered next: 

1. Verification with fractions of G≤(T) 
2. Verification with fixed number of tasks 

Reducing the cost of verification
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◆ Given a subset V of tasks in G.  

      What are the relationships between  
             γV(k), γG(k) and nI  with respect to k = nq or k = nF? 

      By definition 
  q ≤ nF / n  and thus nq ≤ nF 

         also 
            nI ≤ nF 

Relationship between quantities
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◆ With respect to nF we always have  
               γV(nF) ≤ γG(nF) ≤ nI ≤ nF 

– But where does nq fit into this inequality?  
– The only certain relationship is nq ≤ nF 

◆ With respect to nq we always have  
               γV(nq) ≤ γG(nq) ≤ nq ≤ nF 

– But where does nI fit into this inequality?  
– The only certain relationship is  γG(nq) ≤  nI  ≤  nF 

     

Relationship between quantities
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◆ With respect to nq ≤ nF  we can compare directly 

                   γV(nq) ≤ γV(nF) 
                   γG(nq) ≤ γG(nF) 

       Thus 

                   Γ V(nq) ≤ Γ V(nF) 
                   Γ G(nq) ≤ Γ G(nF)

Relationship between quantities
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◆ We will now modify algorithm EMCT so that only a fraction 
of tasks in the predecessors are verified.

Verifying with fractions of G≤(T) 
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◆ Algorithm EMCTα(E)

Verifying with fractions of G≤(T)
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◆ For Algorithm EMCTα(E)

Verifying with fractions of G≤(T)
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◆ For Algorithm EMCTα(E)

Verifying with fractions of G≤(T)
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◆ We will now modify algorithm EMCT so that only a fixed 
number of tasks in the predecessors are verified. 

– We limit our investigations to unity, i.e. one task is verified.

Verifying fixed numbers of tasks
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◆ Algorithm EMCT1(E)

Verifying fixed numbers of tasks
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◆ For Algorithm EMCT1(E)

Verifying fixed numbers of tasks
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◆ For Algorithm EMCT1(E)

Verifying fixed numbers of tasks
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◆ A balance between N  and C   

◆ Monte Carlo certification for a given ε: 
1. a priori convergence 

– determine up front how many times one has to verify 
– one does not know which tasks are selected 

2. run-time convergence 
– run until certain ε is achieved 
– take advantage of knowledge about task selected 

3. for general graphs 
4. for special graphs (e.g. out-trees) 

The cost of certification
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◆ Number of effective initiators 
– this is the # of initiators as perceived by the algorithm 
– e.g. for EMCT an initiator in  G≤(T) is always found, if it exists

Results for pathological cases
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◆ Probability of error induced by one invocation 
– derived for each algorithm

Results for pathological cases
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◆ A priori convergence (N is determined a priori) 
– cannot take advantage of run-time knowledge 
– has to use ΓG(nq) rather than ΓT(nq) 
– qe is the effective attack ratio

Results for pathological cases
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◆ Run-time convergence (N is determined at run-time) 
– takes advantage of run-time knowledge 
– initial verification  εe = 1 - qe 

– each verification  εe = εe (1 - qe) 
– untile   εe ≤ ε

Results for pathological cases
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◆ Verification cost 
– per invocation of the algorithm 
– special case: out-tree

Results for pathological cases
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◆ Certification of large distributed applications  
– hostile environments with no assumptions on fault model 

◆ Considered task dependencies 
– tasks or data may be manipulated 
– allows for error propagation (much more difficult than independent 

case) 
– very difficult to speculate on the behavior of a falsified task 

◆ Several probabilistic certification algorithms were introduced 
– based on re-execution on verifier (reliable resource) 
– inputs available from dataflow checkpoints 

◆ Certification: 
– very low probability of error can be achieved 
– number of tasks to verify is relatively small, depending on graph 
– relationship between attack rate and probability of error

Conclusions
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