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Survivability Applications
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Multi-core Systems
They are here and they will grow!

Assumptions about the future of multi-core

number of cores is increasing

most applications still have limited means of using multi-
threading

degree of parallelism is bound by the largest anti-chain of the 
execution graph

implications on speedup
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Reliability and Redundancy
Redundancy has greatly benefitted reliability

In the past: homogeneous redundancy

New focus on heterogeneous redundancy

avoidance of common mode faults
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Common Mode Faults 
If a SW/HW component fails under a certain input, then 
it does not matter how many identical components one 
uses for redundancy =>  they all fail

Dissimilarity as an approach toward independence of 
faults

Two main approaches

N-version software

N-variant software
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N-version Software
N-version programming (late 70s)

software is derived by multiple teams from the same 
specification in isolation

expectation: common mode fault is reduced or eliminated

different results by different versions indicate fault

limitations

how dissimilar are implementations?

is there true independence of development?

how does one measure the “degree of dissimilarity”?
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N-variant Software
Inspired by N-version software

Different variants are generated in a more “automated” 
fashion

Expectation is that a fault affecting on variant will not 
affect another in an identical way

Again, differences detected by different variants indicate 
fault
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Resilient Multi-core systems

Utilize idle resources to increase resilience

Specifically
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Utilize idle cores for resilience mechanisms

Related work
Towards Byzantine Fault Tolerance in Many-core Computing Platforms, 
Casey M. Jeffery and Renato J. O. Figueiredo, 13th IEEE International 
Symposium on Pacific Rim Dependable Computing, 2007

Focus on transient faults
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Related work [Cox2006]
 N-Variant Systems A Secretless Framework for Security 
through Diversity, B. Cox, et. al., USENIX, 2006

A set of automatically diversified variants execute on same 
inputs

Difference in referencing memory is observed

Identifies execution of injected code

Check out section 3. Model of their paper
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Related work [Cox2006]
 Example of two variants using disjoint memory space. 
Any absolute memory access will be invalid in one the 
variants

10

N-Variant Systems 
A Secretless Framework for Security through Diversity 

Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill,  
Wei Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser 

University of Virginia, Department of Computer Science 
http://www.nvariant.org 

 
Abstract 

 
We present an architectural framework for systematically using automated diversity to provide high assurance detec-
tion and disruption for large classes of attacks. The framework executes a set of automatically diversified variants on 
the same inputs, and monitors their behavior to detect divergences. The benefit of this approach is that it requires an 
attacker to simultaneously compromise all system variants with the same input. By constructing variants with disjoint 
exploitation sets, we can make it impossible to carry out large classes of important attacks. In contrast to previous 
approaches that use automated diversity for security, our approach does not rely on keeping any secrets. In this pa-
per, we introduce the N-variant systems framework, present a model for analyzing security properties of N-variant 
systems, define variations that can be used to detect attacks that involve referencing absolute memory addresses and 
executing injected code, and describe and present performance results from a prototype implementation. 

 
1. Introduction 

Many security researchers have noted that the current 
computing monoculture leaves our infrastructure vul-
nerable to a massive, rapid attack [70, 29, 59]. One 
mitigation strategy that has been proposed is to increase 
software diversity. By making systems appear different 
to attackers, diversity makes it more difficult to con-
struct exploits and limits an attack’s ability to propa-
gate. Several techniques for automatically producing 
diversity have been developed including rearranging 
memory [8, 26, 25, 69] and randomizing the instruction 
set [6, 35]. All these techniques depend on keeping cer-
tain properties of the running execution secret from the 
attacker. Typically, these properties are determined by a 
secret key used to control the randomization. If the se-
cret used to produce a given variant is compromised, an 
attack can be constructed that successfully attacks that 
variant. Pointer obfuscation techniques, memory ad-
dress space randomization, and instruction set randomi-
zation have all been demonstrated to be vulnerable to 
remote attacks [55, 58, 64].  Further, the diversification 
secret may be compromised through side channels, in-
sufficient entropy, or insider attacks.  

Our work uses artificial diversity in a new way that does 
not depend on keeping secrets: instead of diversifying 
individual systems, we construct a single system con-
taining multiple variants designed to have disjoint ex-
ploitation sets. Figure 1 illustrates our framework. We 
refer to the entire server as an N-variant system. The 

system shown is a 2-variant system, but our framework 
generalizes to any number of variants. The polygrapher 
takes input from the client and copies it to all the vari-
ants. The original server process P is replaced with the 
two variants, P0 and P1. The variants maintain the cli-
ent-observable behavior of P on all normal inputs. They 
are, however, artificially diversified in a way that makes 
them behave differently on abnormal inputs that corre-
spond to an attack of a certain class. The monitor ob-
serves the behavior of the variants to detect divergences 
which reveal attacks. When a divergence is detected, 
the monitor restarts the variants in known uncompro-
mised states. 

As a simple example, suppose P0 and P1 use disjoint 
memory spaces such that any absolute memory address 
that is valid in P0 is invalid in P1, and vice versa. Since 
the variants are transformed to provide the same seman-
tics regardless of the memory space used, the behavior 

Server

Input
from 

Client

P0

Polygrapher

P1

Output 
to

Client

Monitor

 
Figure 1. N-Variant System Framework. 

15th USENIX Security Symposium, Vancouver, BC, August 2006 



[Nguyen-Tuong 2008]
Security through redundant data diversity

Anh Nguyen-Tuong, David Evans, John C. Knight, Benjamin 
Cox, Jack W. Davidson

38th IEEE/IFPF International Conference on Dependable 
Systems and Networks, Dependable Computing and 
Communications Symposium. Anchorage, June 2008.
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[Nguyen-Tuong 2008]
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Abstract 

Unlike other diversity-based approaches, N-variant sys-
tems thwart attacks without requiring secrets. Instead, 
they use redundancy (to require an attacker to 
simultaneously compromise multiple variants with the 
same input) and tailored diversity (to make it impossi-
ble to compromise all the variants with the same input 
for given attack classes). In this work, we develop a 
method for using data diversity in N-variant systems to 
provide high-assurance arguments against a class of 
data corruption attacks. Data is transformed in the vari-
ants so identical concrete data values have different 
interpretations. In order to corrupt the data without 
detection, an attacker would need to alter the 
corresponding data in each variant in a different way 
while sending the same inputs to all variants. We 
demonstrate our approach with a case study using that 
thwarts attacks that corrupt UID values. 

 

1. Introduction 

Distributed computing relies upon networked services 
that are exposed to malicious adversaries. These adver-
saries, posing as legitimate clients, attack the services 
with which they interact, doing so by exploiting vulner-
abilities in the service software. Despite much effort, it 
has proven difficult to build services that do not 
contain security vulnerabilities.  

The N-variant systems approach makes use of 
redundancy, using an architecture that combines 
tailored program diversity and execution monitoring to 
provide strong security guarantees that do not rely on 
assumptions about keeping secrets. The transforma-
tions used to generate variants can be simple and the 
keys used to generate the variants can be openly pub-
lished. The N-variant architecture enables high-assur-
ance arguments to be made with respect to specific 
attack classes, regardless of the vulnerability exploited.  

A simple example is address space partitioning, in 
which a program P is replaced with two variants P0 and 
P1 (Figure 1). The variants are constructed to behave 
identically to P on normal inputs, but use disjoint 

memory regions: P0 uses addresses that start with a 0 
bit while addresses for P1 start with a 1 bit. All inputs 
are replicated and sent to both variants. A monitor 
observes both variants and reports an attack if their be-
haviors diverge. An attack that involves accessing a 
specific absolute memory address (e.g., typical format 
string, stack and heap smashing, and return-to-libc 
attacks) may be constructed to succeed against either 
P0 or P1, but if that same input is run on the other 
variant it is guaranteed produce a memory access error 
which will be detected by the monitor. Thus, an attack 
that relies on directly inserting an absolute address is 
impossible (assuming the framework replicates inputs 
correctly and the monitor observes both variants 
behavior with sufficient granularity) since the high bit 
cannot be 0 and 1 at the same time.  

Our earlier work introduced N-variant systems and 
demonstrated address space partitioning as well as 
another instance of the approach for defeating code 
injection by tagging instructions in different variants 
with different values and checking and removing the 
tags before execution [16]. Other researchers have 
developed other variations within similar frameworks: 
Bruschi et al. created a variation to thwart partial 
memory overwrites [9], and Franz created a variation 
using reverse stack ordering that provides probabilistic 
protection against certain relative memory corruption 
attacks [20]. All of these variations alter some low-
level, program-wide property such as the format of 











 
 Figure 1. Two-variant address partitioning. 

In the 38th IEEE/IFPF International Conference on Dependable Systems and Networks, 
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The reason why an attacker is able to send malicious 
data to a targeted interpreter is that higher-level inter-
preters contain vulnerabilities. Software is often 
deployed with many residual faults, some of which turn 
out to be severe security vulnerabilities.  

Figure 2 illustrates an N-variant system with two 
variants using different interpreters for some data type, 
but otherwise implementing the same program. The 
attacker is constrained to use the same communication 
channel as regular user input (External Input), and will 
attempt to craft input that compromises the application. 
This external input, including its embedded malicious 
payload, will be interpreted by a series of interpreters 
in the application, abstracted in the figure by a single 
interpreter, App Interpreter. By exploiting a path 
through App Interpreter containing a vulnerability, the 
embedded malicious data reaches the target interpreter.  

In general, diversity techniques attempt to thwart 
attacks by changing the interfaces between interpreters. 
If an attacker does not know this interface, the attacker 
will have difficultly guessing an input that has the 
desired effect on the target interpreter.  

With data diversity, the variations are created by 
using different data reexpression functions. If there is a 
large space of possible reexpression functions and 
associated secrets, it may be possible to provide a high 
degree of security with a single variant. To inject 
specific malicious data, the attacker needs to know the 
particular inverse reexpression function that is used. 
This configuration corresponds to the use of synthetic 
diversity techniques such as address space [8][42] and 
instruction set randomization for disrupting attacks [6] 
[25][28]. Security arguments for such techniques are 
based on the claim that it is difficult for an attacker to 
guess the randomization key. In practice, keeping 
randomization keys secret has proven difficult, as 
demonstrated by attacks on address space 
randomization [37] and instruction set randomization 
[38] techniques that exploit the limited actual entropy 
available for randomizations and probing opportunities.  

The N-variant framework obviates the need for 
secrets and high entropy. The reexpression functions 
are designed so that any concrete data that is valid for 
one variant is invalid for the other. The target 
interpreters are not designed to attempt to distinguish 
between malicious and normal data directly. Instead, 
they rely on the fact that the same malicious data will 
be sent to both target interpreters, whereas normal 
application data will have been reexpressed.  

As shown in Figure 2, each variant has a different 
reexpression function (R0, R1), and hence will operate 
on different data. Trusted data embedded in P is 
transformed using these functions in the corresponding 
variants. To preserve program semantics, the target 

interpreters are preceded by the corresponding inverse 
reexpression functions, R-1

0 and R-1
1. This establishes a 

different data interpretation between the application 
and target interpreters. 

 

2.2 Normal Equivalence 

Consider a data variation for a target type T and a given 
program P. To establish the normal equivalence 
property for each variant Pi we need to show:                                   

(1) All trusted data of type T used by P is trans-
formed using the reexpression function Ri. 

(2) All instructions in Pi that operate on T values 
directly (that is, without sending them to the 
target interpreter) are transformed to preserve 
the original semantics when operating on 
reexpressed data. 

In addition, we need to show the reexpression function 
and its inverse are indeed inverses: 

(3) ∀x: T, R-1
i(Ri(T)) ≡ T. (inverse property) 

 

Showing the necessary inverse property holds is usually 
straightforward since the reexpression function is 
designed to have this property. 

Establishing the first two properties requires 
reasoning about a program transformation (and possib-
ly also about transformation of other external data as 
seen in Section 3.4). Transforming trusted program 
data requires identifying the constant data of the target 
type in P, and applying Ri to it to produce Pi. If the 
target data type is well defined, this should be fairly 
straightforward. Preserving the semantics is a more 
challenging problem. At worst, the inverse reex-
pression function can be embedded in the program to 
preserve the semantics of the original code.  

2.3 Detection 

The detection property states that if one variant is 

 
Figure 2. N-Variant Systems with Data Diversity. 



Related work [Salamat2008]
 B. Salamat, et. al. 2008

Multi-Variant Program Execution: Using Multi-Core Systems 
to Defuse Buffer-Overflow Vulnerabilities

International Conference on Complex, Intelligent and 
Software Intensive Systems

Variants use different direction in memory allocation

Buffer overflow “crashes” into different neighboring memory
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Related work [Salamat2008]
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Kernel

Hypervisor

Variant 0 Variant 1

Syscall 
S1

S1 
results

Syscall S1  S1 results 

Syscall 
S1'

S1 
results

Figure 1. System calls that change the global
state are executed by the monitor and the re-
sults are communicated to all instances.

If instance A requests 400 bytes to be read from a file, for
example, all other instances are expected to issue the same
request within a certain time window. Once all instances
have arrived at the checkpoint, the underlying file read op-
eration is executed, and a copy of the data is returned to all
instances. In case of write request a similar synchroniza-
tion takes place. The output of all instances is gathered, and
one copy is written to the disk or network socket once all
instances have reached the synchronization point.

In our prototype system we execute several instances
of an application compiled with different compiler settings
(i.e. regular stack and reverse stack). All instances are run
in parallel, and under the control of the monitor using the
host operating system’s process debugging facilities. On
Linux these facilities are powered by ptrace. The advan-
tage of this approach is that our monitor is a regular Linux
process that controls a number of child processes, each of
which runs a diversified instance of the application. The
monitor stops every instance at each system call and com-
pares the system call arguments (see Figure 1, S1 and S10

must match). System calls that do not change the global
state, e.g. mapping a read-only file into memory, are exe-
cuted in all instances. System calls that do change the global
system state, e.g. receiving network data from a socket, are
executed by the monitor in lieu of the instances of the appli-
cation and the data is then distributed to all instances (Fig-
ure 1, result of S1 is sent to all instances). Thus we hide
from the application the fact that it is executed as multiple
parallel instances, and no changes are required to the appli-
cation code.

Coarse-grained monitoring is highly efficient, because
synchronization and monitoring only happens during sys-
tem calls, and the same time, it thwarts a large subset of

code injection attacks.
In order to defeat our technique, an attacker would need

to devise multiple separate attack vectors that not only sub-
vert all the variants without causing “collateral” damage to
the respective other ones, but also perform the same mali-
cious operations in sync afterwards. Since any attack vec-
tor requires some I/O, which implies a system call, an at-
tacker would not be able to subvert all variants in sequence
without passing a checkpoint in between. Hence, the first
subverted variant would need to emulate “correct” opera-
tion until other ones had been subverted as well, and even
afterwards, the malicious versions would need to be syn-
chronized. Not only it is very unlikely that one separate
exploitable vulnerability exists for each variant, but also the
complexity of creating an exploit that respects all other pa-
rameters of our system is extremely high.

5 Benchmarks

To evaluate our prototype system, we performed a num-
ber of tests and benchmarks. All benchmarks were run on
a 2.33 GHz Dual Processor Dual Core Xeon (5140) system
running Redhat Enterprise Linux 4 and Linux kernel 2.6.9-
55.0.6.ELsmp.

5.1 Security

To demonstrate that our system can detect and stop
stack-based buffer-overflow attacks we compiled Apache
1.3.29 with our variance generating compiler and ran it on
our monitor platform. Apache 1.3.29 is an outdated version
of the popular open-source web server. It has a number of
known vulnerabilities, including an off-by-one vulnerabil-
ity in mod rewrite first reported on July 28, 2006 [9]. Using
the published exploit code [1] we can compromise Apache
1.3.29 when compiled with the original GCC compiler and
not running under our platform. The exploit injects code
into the Apache process which opens a local port for incom-
ing connections and binds a shell process to it. An attacker
can connect to this port and access the system.

When compiled with two different stack growth direc-
tions using our modified GCC compiler and running under
our parallel execution monitor, two processes execute the
Apache application in parallel. When the exploit code is
injected into the system, it is distributed to both processes.
In the process with the regular stack growth direction the
code injection immediately succeeds and the exploit code
takes control and issues a system call to open a local port
for incoming network connections. The process running
the Apache instance compiled with reverse stack growth be-
haves differently. Since it has a different stack layout, the
exploit code overwrites data on the stack but cannot actually

846846846



General Scheme
Execution of multiple versions masks or detects faults

Overhead

N-folding amount of work

Redundancy management

What can be absorbed?
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Two Step Approach
Specification Model

Layered adaptive architecture

16



Specification Model
Adaptive Functional Capability Model (AFCM)

System comprised of functionalities

core operations that are mission critical

non-critical, but value-added operations

17

Dissimilarity is typically discussed in the context of N-
version programming [1] dating back to the late 70s. In
N-version programming it is assumed that several software
development groups derive programs based on the same
specification in isolation. The expectation is that this helps
to reduce common mode faults. An approach inspired by
N-version software is N-variant or multi-variant software,
where different variants are generated in a more automated
fashion. Again, the expectation is that a fault affecting one
variant will not affect another. In both cases a fault is de-
tected if a difference is detected between outputs generated
by two versions or variants.

Redundant executions exercised by multiple variants and
extra work of runtime monitoring requires additional com-
putational power. To reduce overhead, our N-variant-based
implementation takes advantage of recent advances in multi-
core hardware. Most new general-purpose computers incor-
porate dual or quad-core processors and higher numbers of
cores are already implemented in graphics processing units.
Whereas in theory the computational capabilities increase
with the number of cores, it becomes difficult to exploit suf-
ficient parallelism to keep all cores utilized. Most common
applications still allow little parallelism and it is likely that
cores may be underutilized or running idle. In our approach,
unused or underutilized cores are exploited to increase
reliability, security, and survivability. Specifically, multiple
variants execute on different cores, and if they can execute
on idle cores, this overhead can be largely absorbed. This
was also shown in [8] where multi-variant functionalities
executed in multi-core systems. Our approach extends this
by making extensive use of N-variant implementation at each
layer of functional capability. In general, the lower a layer,
the more variants it may have in order to provide a higher
degree of resilience and information assurance for essential
service. Nevertheless, exact number of variants and their
configurations required at each layer depend on the type
and number of faults that are to be detected or masked.

Background and Motivation N-variant executions have
been used in order to detect and mask transient faults [4] and
security related faults [3], [7], [8]. The different executions
are considered to be functionally equivalent. For example, in
[4] the replicas are managed dynamically by a hypervisor (a
virtual machine monitor) inserted between the hardware and
the operating system. The redundant functionalities execute
on replica partitions, where the number of partitions is
dictated by the fault model considered. In [8] multi-variant
executions have very high probability of exposing buffer
overflows, e.g., as would be experienced during a buffer
overflow attack. Here the dissimilarity is mainly affecting
the way memory is allocated. Again the functionalities do
not differ with respect to their functional specifications. The
same holds for the work in [3]. In fact the application of the
principle of N-variant execution is based on the functional

equivalence of executions.
The research presented here departs from this equivalency

assumption. Whereas we still see the system as being
composed of functionalities, we assume that these function-
alities may have different levels of functional capabilities
implemented at respective layers. Intuitively, by applying
the principle of “Occam’s razor” we make the assumption
that lower levels of functionality (and thus capability) will
ultimately result in lower probability of failure, as will be
described in the context of Figure 1.

Fault Model The system is subjected to diverse fault
types arising from diverse fault sources. Faults have been
described in the context of hybrid fault models [2], [9]. The
hybrid fault model in [9] considers three fault types, benign
faults, which are globally diagnosable; symmetric faults,
which imply that values are wrong, but equally perceived
by all components that receive the values; and asymmetric
faults, which have no assumption on the fault behavior. The
latter is often called Byzantine fault. Within the context
of this research we are mostly concerned with the error
produced by the fault, rather than fault sources or types.
For example, a buffer overflow may result in observable
differences in memory management. This in turn can lead
to detection and/or masking/recovery.

II. SPECIFICATION MODEL & ARCHITECTURE DESIGN

In this section we extend and generalize the model de-
scribed in [5], which is a special case of the research below.

A. Adaptive Functional Capability Model
We propose a formal model to specify multiple function-

alities with adjustable levels of capability. The model, i.e.,
the Adaptive Functional Capability Model, attaches each
functionality to layers of capability. The AFCM is used
as part of requirement specification. During requirement
elicitation, a development team works with stake holders of a
project to identify not just functionalities, but also capability
levels for each functionality. These capability levels specify
the plan for graceful degradation in case of faults or when
under attack.

F
1

F
2

F
3

111 F
1

F
2

22

Figure 1. AFCM for functionality F1 and F2

Assume the system is comprised of functionalities
F1 · · · Fm. Figure 1 shows the AFCM for two sample func-
tionalities F1 and F2. The requirements for F1 define three
levels of capabilities: F 1

1 defines the set of core operations
that are mission-critical, F 2

1 includes F 1
1 and some non-

critical but value-added operations, and F 3
1 adds some more

value-added operations. We write F 1
1 ⇤ F 2

1 ⇤ F 3
1 , where

⇤ is a preorder on the capability levels. The semantics of
⇤ is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system, a
functionality F can be specified as a set of sequences of
operations T (F ) (in requirement elicitation, often referred
to as scenarios or flow of events). We represent a sequence
of operations as (p0(I0), O0), (p1(I1), O1), · · ·, where pi is
the operation at step i, Ii is the input data set, and Oi is
the output dataset. By default, T (F ) also includes a null
sequence � . In such a system, we can define that F j ⌅ F j+1

if and only if T (F j) ⌃ T (F j+1), where the piecewise
inclusion relation ⌃ is defined as follows:

(i) T (F j) � T (F j+1); and,
(ii) For each (p0(I0), O0), (p1(I1), O1), · · ·

⇧ T (F j+1), there is a sequence of operations
(p0

0(I 0
0), O0

0), (p0
1(I 0

1), O0
1), · · · ⇧ T (F j) and a non-

decreasing function g such that g(0) = 0, pk = p0
g(k),

Ik ⇥ I 0
g(k), and Ok ⇥ O0

g(k).

Note that (i) states that every sequence of operations defined
at capability F j shall also be included at capability F j+1.
Furthermore, (ii) states that each sequence of operations in
F j+1 extends a sequence of operations in F j . Note that (ii)
doesn’t prohibit the introduction of a sequence of completely
new operations in T (F j+1). In such a case, the sequence
of new operations can be seen as an extension of the null
sequence � ⇧ T (F j).

As an example, consider an adaptive N-variant imple-
mentation of a secured database system D. Each record
d = {d1, d2} in D contains two sets of data. Set d1 contains
mission-critical data and d2 is a set of non-mission-critical
but value-added data. For a registered client, D stores its
private key K 0

D and each registered user’s public key KU .
A registered user keeps his/her private key K 0

U and D’s
public key KD. Communication between D and a registered
user is encrypted using the public/private key pairs. For
simplicity, we assume that the encryption algorithm in use is
deterministic. Let’s consider a functionality F of D, which
allow a registered user to retrieve a record by its record ID
(RID). F is defined with two levels of capabilities. At level
F 1, a client can retrieve the mission-critical data associated
with a record, and at level F 2, a client may also retrieve
valued-added data associate with the record.

Using our framework, the functional capabilities F 1 and
F 2 are implemented by two layers L1 and L2. Each layer
consists of N-variant modules for required reliability and se-
curity. The Monitoring and Reconfiguration Module (MRM)
decides the operational status of L1 and L2. It also serves as
the interface between a user and D. The underlying database
contains actual records and it can only be accessed by L1 and
L2. The details of architecture design in our framework will
be discussed in Section II-B. The UML sequence diagram in
Figure 2 shows interactions between a registered user and the
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Figure 2. Sequence diagram for an adaptive secured database system D

database system D. The system’s behavior at capability level
F i is defined by the set of successful interactions T (F i)
among a user, MRM, Li, and the underlying database DB.
If both L1 and L2 operate correctly, then d1

1 = d2
1 and hence

{d1
1} � {d2

1, d
2
2}. Therefore, T (F 1) ⌃ T (F 2) and F 1 ⇤ F 2,

i.e., the system D implements the preorder on capability
levels F 1 and F 2.

The purpose of AFCM is to specify not only functional
requirements, but also requirements for reconfiguration and
adaptiveness. It has two features to serve its purpose:

First, the model associates each functionality with ca-
pability levels, which specify reconfiguration requirements
for the functionality. It states that, in the event of a fault,
e.g., when the system has been compromised, a system shall
scale back its services in an orderly manner by following the
capability levels defined in AFCM, e.g., recovery to a lower
level implemented in the next layer down.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation ⌃ we proposed for transaction-based sys-

Dissimilarity is typically discussed in the context of N-
version programming [1] dating back to the late 70s. In
N-version programming it is assumed that several software
development groups derive programs based on the same
specification in isolation. The expectation is that this helps
to reduce common mode faults. An approach inspired by
N-version software is N-variant or multi-variant software,
where different variants are generated in a more automated
fashion. Again, the expectation is that a fault affecting one
variant will not affect another. In both cases a fault is de-
tected if a difference is detected between outputs generated
by two versions or variants.

Redundant executions exercised by multiple variants and
extra work of runtime monitoring requires additional com-
putational power. To reduce overhead, our N-variant-based
implementation takes advantage of recent advances in multi-
core hardware. Most new general-purpose computers incor-
porate dual or quad-core processors and higher numbers of
cores are already implemented in graphics processing units.
Whereas in theory the computational capabilities increase
with the number of cores, it becomes difficult to exploit suf-
ficient parallelism to keep all cores utilized. Most common
applications still allow little parallelism and it is likely that
cores may be underutilized or running idle. In our approach,
unused or underutilized cores are exploited to increase
reliability, security, and survivability. Specifically, multiple
variants execute on different cores, and if they can execute
on idle cores, this overhead can be largely absorbed. This
was also shown in [8] where multi-variant functionalities
executed in multi-core systems. Our approach extends this
by making extensive use of N-variant implementation at each
layer of functional capability. In general, the lower a layer,
the more variants it may have in order to provide a higher
degree of resilience and information assurance for essential
service. Nevertheless, exact number of variants and their
configurations required at each layer depend on the type
and number of faults that are to be detected or masked.

Background and Motivation N-variant executions have
been used in order to detect and mask transient faults [4] and
security related faults [3], [7], [8]. The different executions
are considered to be functionally equivalent. For example, in
[4] the replicas are managed dynamically by a hypervisor (a
virtual machine monitor) inserted between the hardware and
the operating system. The redundant functionalities execute
on replica partitions, where the number of partitions is
dictated by the fault model considered. In [8] multi-variant
executions have very high probability of exposing buffer
overflows, e.g., as would be experienced during a buffer
overflow attack. Here the dissimilarity is mainly affecting
the way memory is allocated. Again the functionalities do
not differ with respect to their functional specifications. The
same holds for the work in [3]. In fact the application of the
principle of N-variant execution is based on the functional

equivalence of executions.
The research presented here departs from this equivalency

assumption. Whereas we still see the system as being
composed of functionalities, we assume that these function-
alities may have different levels of functional capabilities
implemented at respective layers. Intuitively, by applying
the principle of “Occam’s razor” we make the assumption
that lower levels of functionality (and thus capability) will
ultimately result in lower probability of failure, as will be
described in the context of Figure 1.

Fault Model The system is subjected to diverse fault
types arising from diverse fault sources. Faults have been
described in the context of hybrid fault models [2], [9]. The
hybrid fault model in [9] considers three fault types, benign
faults, which are globally diagnosable; symmetric faults,
which imply that values are wrong, but equally perceived
by all components that receive the values; and asymmetric
faults, which have no assumption on the fault behavior. The
latter is often called Byzantine fault. Within the context
of this research we are mostly concerned with the error
produced by the fault, rather than fault sources or types.
For example, a buffer overflow may result in observable
differences in memory management. This in turn can lead
to detection and/or masking/recovery.

II. SPECIFICATION MODEL & ARCHITECTURE DESIGN

In this section we extend and generalize the model de-
scribed in [5], which is a special case of the research below.

A. Adaptive Functional Capability Model
We propose a formal model to specify multiple function-

alities with adjustable levels of capability. The model, i.e.,
the Adaptive Functional Capability Model, attaches each
functionality to layers of capability. The AFCM is used
as part of requirement specification. During requirement
elicitation, a development team works with stake holders of a
project to identify not just functionalities, but also capability
levels for each functionality. These capability levels specify
the plan for graceful degradation in case of faults or when
under attack.
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Figure 1. AFCM for functionality F1 and F2

Assume the system is comprised of functionalities
F1 · · · Fm. Figure 1 shows the AFCM for two sample func-
tionalities F1 and F2. The requirements for F1 define three
levels of capabilities: F 1

1 defines the set of core operations
that are mission-critical, F 2

1 includes F 1
1 and some non-

critical but value-added operations, and F 3
1 adds some more
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each record in D contains two sets of data, i.e.,  d = {d1, d2}

d1 contains mission critical data

d2 non-mission critical, but value-added data
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value-added operations. We write F 1
1 ⇤ F 2

1 ⇤ F 3
1 , where

⇤ is a preorder on the capability levels. The semantics of
⇤ is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system, a
functionality F can be specified as a set of sequences of
operations T (F ) (in requirement elicitation, often referred
to as scenarios or flow of events). We represent a sequence
of operations as (p0(I0), O0), (p1(I1), O1), · · ·, where pi is
the operation at step i, Ii is the input data set, and Oi is
the output dataset. By default, T (F ) also includes a null
sequence � . In such a system, we can define that F j ⌅ F j+1

if and only if T (F j) ⌃ T (F j+1), where the piecewise
inclusion relation ⌃ is defined as follows:

(i) T (F j) � T (F j+1); and,
(ii) For each (p0(I0), O0), (p1(I1), O1), · · ·

⇧ T (F j+1), there is a sequence of operations
(p0

0(I 0
0), O0

0), (p0
1(I 0

1), O0
1), · · · ⇧ T (F j) and a non-

decreasing function g such that g(0) = 0, pk = p0
g(k),

Ik ⇥ I 0
g(k), and Ok ⇥ O0

g(k).

Note that (i) states that every sequence of operations defined
at capability F j shall also be included at capability F j+1.
Furthermore, (ii) states that each sequence of operations in
F j+1 extends a sequence of operations in F j . Note that (ii)
doesn’t prohibit the introduction of a sequence of completely
new operations in T (F j+1). In such a case, the sequence
of new operations can be seen as an extension of the null
sequence � ⇧ T (F j).

As an example, consider an adaptive N-variant imple-
mentation of a secured database system D. Each record
d = {d1, d2} in D contains two sets of data. Set d1 contains
mission-critical data and d2 is a set of non-mission-critical
but value-added data. For a registered client, D stores its
private key K 0

D and each registered user’s public key KU .
A registered user keeps his/her private key K 0

U and D’s
public key KD. Communication between D and a registered
user is encrypted using the public/private key pairs. For
simplicity, we assume that the encryption algorithm in use is
deterministic. Let’s consider a functionality F of D, which
allow a registered user to retrieve a record by its record ID
(RID). F is defined with two levels of capabilities. At level
F 1, a client can retrieve the mission-critical data associated
with a record, and at level F 2, a client may also retrieve
valued-added data associate with the record.

Using our framework, the functional capabilities F 1 and
F 2 are implemented by two layers L1 and L2. Each layer
consists of N-variant modules for required reliability and se-
curity. The Monitoring and Reconfiguration Module (MRM)
decides the operational status of L1 and L2. It also serves as
the interface between a user and D. The underlying database
contains actual records and it can only be accessed by L1 and
L2. The details of architecture design in our framework will
be discussed in Section II-B. The UML sequence diagram in
Figure 2 shows interactions between a registered user and the
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Figure 2. Sequence diagram for an adaptive secured database system D

database system D. The system’s behavior at capability level
F i is defined by the set of successful interactions T (F i)
among a user, MRM, Li, and the underlying database DB.
If both L1 and L2 operate correctly, then d1

1 = d2
1 and hence

{d1
1} � {d2

1, d
2
2}. Therefore, T (F 1) ⌃ T (F 2) and F 1 ⇤ F 2,

i.e., the system D implements the preorder on capability
levels F 1 and F 2.

The purpose of AFCM is to specify not only functional
requirements, but also requirements for reconfiguration and
adaptiveness. It has two features to serve its purpose:

First, the model associates each functionality with ca-
pability levels, which specify reconfiguration requirements
for the functionality. It states that, in the event of a fault,
e.g., when the system has been compromised, a system shall
scale back its services in an orderly manner by following the
capability levels defined in AFCM, e.g., recovery to a lower
level implemented in the next layer down.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation ⌃ we proposed for transaction-based sys-



value-added operations. We write F 1
1 ⇤ F 2

1 ⇤ F 3
1 , where

⇤ is a preorder on the capability levels. The semantics of
⇤ is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system, a
functionality F can be specified as a set of sequences of
operations T (F ) (in requirement elicitation, often referred
to as scenarios or flow of events). We represent a sequence
of operations as (p0(I0), O0), (p1(I1), O1), · · ·, where pi is
the operation at step i, Ii is the input data set, and Oi is
the output dataset. By default, T (F ) also includes a null
sequence � . In such a system, we can define that F j ⌅ F j+1

if and only if T (F j) ⌃ T (F j+1), where the piecewise
inclusion relation ⌃ is defined as follows:

(i) T (F j) � T (F j+1); and,
(ii) For each (p0(I0), O0), (p1(I1), O1), · · ·

⇧ T (F j+1), there is a sequence of operations
(p0

0(I 0
0), O0

0), (p0
1(I 0

1), O0
1), · · · ⇧ T (F j) and a non-

decreasing function g such that g(0) = 0, pk = p0
g(k),

Ik ⇥ I 0
g(k), and Ok ⇥ O0

g(k).

Note that (i) states that every sequence of operations defined
at capability F j shall also be included at capability F j+1.
Furthermore, (ii) states that each sequence of operations in
F j+1 extends a sequence of operations in F j . Note that (ii)
doesn’t prohibit the introduction of a sequence of completely
new operations in T (F j+1). In such a case, the sequence
of new operations can be seen as an extension of the null
sequence � ⇧ T (F j).

As an example, consider an adaptive N-variant imple-
mentation of a secured database system D. Each record
d = {d1, d2} in D contains two sets of data. Set d1 contains
mission-critical data and d2 is a set of non-mission-critical
but value-added data. For a registered client, D stores its
private key K 0

D and each registered user’s public key KU .
A registered user keeps his/her private key K 0

U and D’s
public key KD. Communication between D and a registered
user is encrypted using the public/private key pairs. For
simplicity, we assume that the encryption algorithm in use is
deterministic. Let’s consider a functionality F of D, which
allow a registered user to retrieve a record by its record ID
(RID). F is defined with two levels of capabilities. At level
F 1, a client can retrieve the mission-critical data associated
with a record, and at level F 2, a client may also retrieve
valued-added data associate with the record.

Using our framework, the functional capabilities F 1 and
F 2 are implemented by two layers L1 and L2. Each layer
consists of N-variant modules for required reliability and se-
curity. The Monitoring and Reconfiguration Module (MRM)
decides the operational status of L1 and L2. It also serves as
the interface between a user and D. The underlying database
contains actual records and it can only be accessed by L1 and
L2. The details of architecture design in our framework will
be discussed in Section II-B. The UML sequence diagram in
Figure 2 shows interactions between a registered user and the
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Figure 2. Sequence diagram for an adaptive secured database system D

database system D. The system’s behavior at capability level
F i is defined by the set of successful interactions T (F i)
among a user, MRM, Li, and the underlying database DB.
If both L1 and L2 operate correctly, then d1

1 = d2
1 and hence

{d1
1} � {d2

1, d
2
2}. Therefore, T (F 1) ⌃ T (F 2) and F 1 ⇤ F 2,

i.e., the system D implements the preorder on capability
levels F 1 and F 2.

The purpose of AFCM is to specify not only functional
requirements, but also requirements for reconfiguration and
adaptiveness. It has two features to serve its purpose:

First, the model associates each functionality with ca-
pability levels, which specify reconfiguration requirements
for the functionality. It states that, in the event of a fault,
e.g., when the system has been compromised, a system shall
scale back its services in an orderly manner by following the
capability levels defined in AFCM, e.g., recovery to a lower
level implemented in the next layer down.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation ⌃ we proposed for transaction-based sys-

value-added operations. We write F 1
1 ⇤ F 2

1 ⇤ F 3
1 , where

⇤ is a preorder on the capability levels. The semantics of
⇤ is defined and interpreted based on application context.
For instance, in a transaction-based asynchronous system, a
functionality F can be specified as a set of sequences of
operations T (F ) (in requirement elicitation, often referred
to as scenarios or flow of events). We represent a sequence
of operations as (p0(I0), O0), (p1(I1), O1), · · ·, where pi is
the operation at step i, Ii is the input data set, and Oi is
the output dataset. By default, T (F ) also includes a null
sequence � . In such a system, we can define that F j ⌅ F j+1

if and only if T (F j) ⌃ T (F j+1), where the piecewise
inclusion relation ⌃ is defined as follows:

(i) T (F j) � T (F j+1); and,
(ii) For each (p0(I0), O0), (p1(I1), O1), · · ·

⇧ T (F j+1), there is a sequence of operations
(p0

0(I 0
0), O0

0), (p0
1(I 0

1), O0
1), · · · ⇧ T (F j) and a non-

decreasing function g such that g(0) = 0, pk = p0
g(k),

Ik ⇥ I 0
g(k), and Ok ⇥ O0

g(k).

Note that (i) states that every sequence of operations defined
at capability F j shall also be included at capability F j+1.
Furthermore, (ii) states that each sequence of operations in
F j+1 extends a sequence of operations in F j . Note that (ii)
doesn’t prohibit the introduction of a sequence of completely
new operations in T (F j+1). In such a case, the sequence
of new operations can be seen as an extension of the null
sequence � ⇧ T (F j).

As an example, consider an adaptive N-variant imple-
mentation of a secured database system D. Each record
d = {d1, d2} in D contains two sets of data. Set d1 contains
mission-critical data and d2 is a set of non-mission-critical
but value-added data. For a registered client, D stores its
private key K 0

D and each registered user’s public key KU .
A registered user keeps his/her private key K 0

U and D’s
public key KD. Communication between D and a registered
user is encrypted using the public/private key pairs. For
simplicity, we assume that the encryption algorithm in use is
deterministic. Let’s consider a functionality F of D, which
allow a registered user to retrieve a record by its record ID
(RID). F is defined with two levels of capabilities. At level
F 1, a client can retrieve the mission-critical data associated
with a record, and at level F 2, a client may also retrieve
valued-added data associate with the record.

Using our framework, the functional capabilities F 1 and
F 2 are implemented by two layers L1 and L2. Each layer
consists of N-variant modules for required reliability and se-
curity. The Monitoring and Reconfiguration Module (MRM)
decides the operational status of L1 and L2. It also serves as
the interface between a user and D. The underlying database
contains actual records and it can only be accessed by L1 and
L2. The details of architecture design in our framework will
be discussed in Section II-B. The UML sequence diagram in
Figure 2 shows interactions between a registered user and the
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Figure 2. Sequence diagram for an adaptive secured database system D

database system D. The system’s behavior at capability level
F i is defined by the set of successful interactions T (F i)
among a user, MRM, Li, and the underlying database DB.
If both L1 and L2 operate correctly, then d1

1 = d2
1 and hence

{d1
1} � {d2

1, d
2
2}. Therefore, T (F 1) ⌃ T (F 2) and F 1 ⇤ F 2,

i.e., the system D implements the preorder on capability
levels F 1 and F 2.

The purpose of AFCM is to specify not only functional
requirements, but also requirements for reconfiguration and
adaptiveness. It has two features to serve its purpose:

First, the model associates each functionality with ca-
pability levels, which specify reconfiguration requirements
for the functionality. It states that, in the event of a fault,
e.g., when the system has been compromised, a system shall
scale back its services in an orderly manner by following the
capability levels defined in AFCM, e.g., recovery to a lower
level implemented in the next layer down.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation ⌃ we proposed for transaction-based sys-
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Figure 2. A layered adaptive N-variant archi-
tecture design for the AFCM of Figure 1

3 Adaptability and Survivability

The layered adaptive N-variant architecture improves
system resilience by supporting 1) real-time fault detection
though redundancy management and cross-layer monitor-
ing, 2) fault masking, and 3) system reconfiguration. The
architecture design in Figure 2 includes the Monitoring and
Reconfiguration Module (MRM). Critical or sensitive func-
tionalities are implemented using the layered N-variant ar-
chitecture and the MRM acts as a sentry for layered N-
variant components. The MRM monitors and sanctions the
communication in and out of the N-variant components. To-
gether, the N-variant-based layers and the MRM provide
runtime monitoring and real-time fault tolerance with re-
configuration, essential for an adaptive system.

Runtime monitoring by the MRM The MRM uses ob-
servable behavior of a lower layer to decide whether the
layer above is compromised or not. If a fault is detected, it
reconfigures the system by disabling affected layers while
essential functional capabilities are still provided by the
lower layer(s). In section 2.1 capability levels in the AFCM
are defined in such a way that a sequence of operations spec-
ified at a higher level is an extension of some sequence of
operations specified at a lower level. In our layered adap-
tive N-variant architecture, all the layers process incoming
requests concurrently. Since a layer Li is an implementation
of an AFCM capability level F i, a sequence of operations
executed by layer Li shall be included in a sequence of op-
erations executed by layer Li+1. Should this not be the case
it indicates problems (i.e., a fault) in Li+1. The lower layer
Li is realized using N-variants of simpler implementations
and potentially a higher degree of redundancy. It is argued
that lower complexity implementations together with more
stringent analysis/testing at Li is assumed to make variants
in Li more reliable than in Li+1. A larger degree of N-
variants also increases reliability, as it implements a k-of-N

configuration.

Real-time reconfiguration The AFCM provides a recon-
figuration plan in which a functionality can scale back
its services in an orderly manner, thus providing graceful
degradation. A layer Li serves as the backup for layer Li+1

above it. A lower layer forgoes some functional capability
in lieu of improved dependability. If the MRM detects a
fault in layer Li+1, it disables Li+1 and the system auto-
matically scales its capability to the level implemented by
Li. For completeness shake it should be noted that capabili-
ties can not only be decreased, but also extended should the
need arise, e.g., after recovery or repair.

The layered adaptive N-variant architecture is designed
for improving system survivability for mission-critical ap-
plications. By implementing functionalities in layers the
capability of shifting to a lower layer (upon detection of a
fault) provides a contingency plan that allows a system to
scale back its services towards essential services as the re-
sult of faults or malicious attacks. However, the layered ar-
chitecture is also designed to support information security.

4 Reliability Analysis

In this section we discuss the impact of the layered model
from a reliability analysis point of view. Before establishing
a formal model for the analysis the link to previous research
needs to be established. Multi-variant approaches have been
previously described in [3, 4, 8, 12]. However, these mod-
els are described within a single layers, and their N-variant
models constitute special cases of the layered architecture
presented here. Thus, the cited approaches can be adopted
at any layer within our architecture. It should be noted that
they all have specifications and implementation at the same
level and layer respectively. This means that the approaches
deal with fault detection and possible treatment dependent
on the degree of redundancy. However, adaptability and
graceful degradation as described above is not supported.
For example, the multi-variant scheme described in [8] uses
two variants of memory referencing. Both variants imple-
ment the same functional capability, e.g., at layer L1 with
V 1

1 and V 1
2 . The model in [3] has the similar limitation.

The application of N-variant approaches is not simply
another way of generating dissimilarity similarly to N-
version programming, but the specific derivation of variants
that are designed to minimize common-mode faults, to the
point of predictable elimination. For example, the memory
management in [8] practically eliminates the potential for
buffer overflows, since the two variants use reverse memory
allocation (one uses forward and the other reversed alloca-
tion). In order for a buffer overflow attack to succeed not
only would both variants have to be attacked at the same
time, but, more importantly, the buffer overflow would have
to have meaning in two directions. The latter implies that
the overflow would have to “flow” into reverse memory in
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(ii) For each ⌅p0(I0), O0), (p1(I1), O1), · · ·⇧ ⇤ T (F i), there
is a sequence of operations (p�

0(I
�
0), O

�
0), (p

�
1(I

�
1), O

�
1), · · ·

and a non-decreasing function g such that pi = p�
g(i),

Ii � I �
g(i), and Oi � O�

g(i).

Note that (i) states that every sequence of operations defined
at capability F j shall also be included at capability F j+1.
Furthermore, (ii) states that each sequence of operations in
F j+1 extends a sequence of operations in F j . Note that
(ii) doesn’t prohibit the introduction of a completely new
sequence of operations in F j+1. In such a case, the new
sequence of operations can be seen as an extension of the
default null sequence � ⇤ P (F j+1).

As an example, consider a multi-level secured record-keeping
system S in which each record d = (d1, d2) contains two sets
of data. Set d1 contains mission-critical data and d2 is a set
of non-mission-critical but value-added data. A function-
ality Fr of system S is that a registered user can retrieve
data. For each registered user u, S stores his public key
Ku

pub and the user keeps his private key Ku
prv. Fr is de-

fined with two levels of capabilities. At level F 1
r , a register

user can retrieve the mission-critical data associated with a
record. T (F 1

r ) contains the following sequence of operations
t1:

(encryu(Ku
prv, “get id”), req)(sentu,s({u, req}), acks)

(decrys(K
u
pub, req), “get id”)(reads(id), {d1, d2})

(encrys(K
u
pub, d

1), e1)(sends,u(e1), acku)
(decryu(Ku

prv, e1), d1)

At level F 2
r , a register user can retrieve the mission-critical

data as well as value-added data. T (F 2
r ) contains a sequence

of operations t2 as follows:

(encryu(Ku
prv, “get id”), req)(sentu,s({u, req}), acks)

(decrys(K
u
pub, req), “get id”)(reads(id), {d1, d2})

(encrys(K
u
pub, {d1, d2}), {e1, e2})(sends,u({e1, e2}), acku)

(decryu(Ku
prv, {e1, e2}), {d1, d2})

It is straightforward to see that T (F 1
r ) ⌃ T (F 2

r ), and
hence F 1

r ⇥ F 2
r .

The purpose of MLFCM is to specify not just functional
requirement, but also requirements for reconfiguration and
adaptiveness. It has two distinctive features to serve its
purpose:

First, the model associates each functionality with capa-
bility levels, which specify reconfiguration requirements for
the functionality. It states that, in the event of a fault, e.g.,
the system has been compromised, a system shall scale back
its services in an orderly manner by following capability lev-
els defined in MLFCMs.

Second, the definition of capability levels also facilitates
reconfigurable design. For example, consider the piece-wise
inclusion relation ⌃ we proposed for transaction-based sys-
tems. It requires that system behavior at a higher capability
level shall be an extension of behavior at a lower capability
level. Hence, we can use behavior at a lower capability level
as a reference for monitoring behavior at the higher capabil-
ity level. Therefore, an implementation for capability levels
provides a path for a system to scale back itself. Next, we
will discuss a architecture design that facilitates reconfigu-
ration as specified by a MLFCM.

2.2 Layered N-variant Architecture
To realize the reconfiguration requirements specified in

MLFCM, we propose a layered adaptive architecture design

similar to the N-variant techniques in [3, 7]. Figure 2 shows
an example of the adaptive N-variant architecture. The
architecture has a two-dimension layered structure. Each
vertical layer realizes a capability level. It implements se-
quences of operations specified for its capability level. A
layer may be disabled or nonexistent. The capability level
of the entire functionality is decided by its highest enabled
layer. Each layer is a collection of variants implementing its
capability level. Variants are systematically diversified so
that it is unlikely that that a common mode fault can occur,
e.g., for a given fault model, an attacker can not compromise
all the variants without being detected and/or the fault be-
ing masked. One could argue that a lower layer should have
more variants to improve resilience of the functionality.
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Figure 2: A layered adaptive N-variant architecture
design for MLFCM in Figure 1

2.3 Adaptability and Reconfigurability
The layered adaptive N-variant architecture includes a

monitoring and reconfiguration module. The module serves
as a filter between layered N-variant functionalities and other
sensitive components. The module intercepts calls to sensi-
tive components. It uses sequences of operations in a layer
to decide whether sequences of operations in the layer above
are legitimate.

The layers in the adaptive N-variant architecture serve
two purposes:

First, operations executed by a lower layer are used as a
reference for monitoring at a higher layer. In section 2.1
capability levels in a MLFCM are defined in such a way
that a sequence of operations specified at a higher level is
an extension of some sequence of operations specified at a
lower level. In our layered adaptive N-variant architecture,
all the layers process incoming requests concurrently. Since
a layer Li is an implementation of a capability level F i in
MLFCM, a sequence of operations executed by layer Li shall
be included in a sequence of operations executed by layer
Li+1. Should this not be the case it indicates problems in
Li+1. The reason for this is because the lower layer Li is
realized using a higher degree of N-variant of simpler (and
thus lower complexity) implementations, and hence Li shall
be considered more reliable than Li+1. This argument is
analogous to parallel reliability block diagrams. Recall that
the unreliability of a parallel system is equal to the product
of the unreliabilities of all parallel components. Here the
number of components (degree of N-variant) at layer Li is
larger than that of Li+1 and the fail-rates of the components
at Li are smaller that those at layer Li+1, due to its simpler
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implementation. The result is a higher reliability at layer
Li.

Second, layers provide a reconfiguration plan in which a
functionality can scale back its services in an orderly man-
ner, thus providing graceful degradation. A layer Li serves
as the backup for layer Li+1 above it. A lower layer forgoes
some functional capability in lieu of improved dependabil-
ity. If the monitoring and reconfiguration module detects
faults in a layer Li+1, it disables Li+1 and the system au-
tomatically scales its capability to the level implemented by
Li. For completeness shake it should be noted that capa-
bilities can not only be decreased, but also extended should
the need arise, e.g., after recovery or repair.

As an example, consider the adaptive N-variant architec-
ture design for the multi-level record-keeping system in Sec-
tion 2.2. The design contains two layers, L1

r and L2
r, that im-

plement capability levels F 1
r and F 2

r , respectively. Requests
for retrieving data are sent to both layers for processing. If
a request is from a registered user, L1

r executes t1 and L2
r ex-

ecutes t2. Note that t1 and t2 include a command reads(id)
to access S’s protected database subsystem. A monitoring
and reconfiguration module intercepts all the calls to the
database subsystem. Query reads(id) from L2

r is released
if and only if a similar call reads(id) also received from L1

r.
If the monitoring and reconfiguration module does not re-
ceive a call reads(id) from L1

r, it infers that layer L2
r has

been compromised and hence it disables L2
r. Consequently

S scales its capability to F 1
r , which is implemented by L1

r.
This action constitutes a survivability feature with respect
to the functionality Fr.

The layered adaptive N-variant architecture is designed
for improving system survivability for mission-critical ap-
plications. By implementing functionalities in layers the
capability of shifting to a lower layer upon detection of a
fault provides a contingent plan that allows a system to scale
back its services towards essential services as the result of
faults or malicious attacks. The layered architecture is also
designed to support information security. As can be seen
in the example above, the monitoring and reconfiguration
module ensures that sensitive information of d1 will not be
leaked by a higher layer, even the latter is compromised by
an attacker. In the example, a fault detection at layers Li

and Li+1 resulted in an action by the monitor, blocking the
release of d1 and d2.

2.4 Special Cases
The N-variant approaches described in [3, 4, 6, 7] are ac-

tually special cases and can be described within the architec-
ture. First, it should be noted that all of these approaches
have specifications and implementation at the same level and
layer respectively. This means that the approaches deal with
fault detection and possible treatment dependent on the de-
gree of redundancy. However, adaptability as described in
subsection 2.3 is not supported.

The systems above can be described at one level. For
example, the multi-variant scheme described in [7] operate
on two variants at layer L1, e.g., V 1

1 and V 1
2 . The authors

mainly focus on two variant memory referencing. The model
in [3] can be specified similarly.

It should be noted however that fault masking is actually
simpler than typically observed in redundant systems, e.g.,
k-of-N or NMR. For example, in a triple modular redundant
systems two faulty modules can produce the same result and
consequently the TMR would vote on the incorrect value in

the majority vote. Given the schemes described in [7] and
[6] it is statistically very unlikely that two fault modules
produce the same fault. This is very advantageous when
trying to determine thresholds for non-faulty values and to
reduce the degree of N-variants at each layer.

3. CONCLUSION
This research introduced a new way of looking at N-variant

executions by defining a hierarchical formal model for N-
variant executions especially suitable for systems based on
modern multi-core architectures. One dimensions of the
model N-variant implementations allow detection and mask-
ing of faults, dependent on the degree of variants and the
fault model. At this layer we can take full advantage of many
di�erent solutions that have been presented in the literature
associated with multi-variant systems. In the other dimen-
sion adaptation is introduced, which is an integral part of a
survivable or resilient system. The basis for adaptation is
the introduction of di�erent levels of specification that re-
sult in layers of implementation, each of which in turn can
be N-variant. Providing a hierarchy of capabilities, where
lower level specifications are subsets of higher level speci-
fications, has several advantages. First, lower level func-
tionalities can e�ectively cross-monitor higher layers, which
has positive implications for security and reliability. Second,
during adaptation executions can be shifted to lower layers
which increases survivability and resilience.
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arise, e.g., after recovery or repair.
Consider the example of the secured database system in

Figure 2. The design contains two N-variant-based layers,
L1 and L2, that implement capability levels F 1 and F 2

respectively. Each query request is duplicated by the MRM
and routed to both layers for processing. Consequently, each
layer issues the same query to a back-end database and
encrypts the query result. The difference is that L1 only
encrypts the mission-critical portion of the query result as
e1
1 while L2 encrypts the entire result as {e2

1, e
2
2}. Requests

to send back encrypted data from both layers are intercepted
and checked by the MRM. Since we assume that the
encryption algorithm is deterministic, e1

1 = e2
1 if both layers

operate correctly. Otherwise, the MRM infers that layer L2

has been compromised and hence disables it. Consequently
D scales back its capability to F 1, which is implemented
by L1. This action constitutes a survivability feature with
respect to the functionality F .

The layered adaptive N-variant architecture is designed
for improving system survivability for mission-critical ap-
plications. By implementing functionalities in layers the
capability of shifting to a lower layer (upon detection of a
fault) provides a contingent plan that allows a system to scale
back its services towards essential services as the result of
faults or malicious attacks. However, the layered architecture
is also designed to support information security. As can be
seen in the example above w.r.t. confidentiality, the MRM
ensures that sensitive information in d2 will not be leaked
by a higher layer, even if the latter is compromised by an
attacker. The detection of a fault due to discrepancies of
results in L1 and L2, i.e., if e1

1 �= e2
1, will result in MRM

blocking the release of d2.

IV. RELIABILITY AND RESILIENCE

If we look at the multi-variant approach within a single
layer or our architecture, we can see that the N-variant
approaches described in [3], [4], [7], [8] are actually special
cases, i.e., these approaches can be adopted at any layer
within our architecture. It should be noted that they all have
specification and implementation at the same level and layer
respectively. This means that the approaches deal with fault
detection and possible treatment dependent on the degree of
redundancy. However, adaptability and graceful degradation
as described above is not supported. For example, the multi-
variant scheme described in [8] uses two variants of memory
referencing. Both variants implement the same functional
capability. The model in [3] has a similar limitation.

Fault masking using N-variant approaches is actually
more effective than typically observed in redundant systems,
e.g., k-of-N or NMR. For example, in a triple modular
redundant system two faulty modules can produce the
same result and consequently the TMR would vote on the
incorrect value in the majority vote. Given the schemes
described in [8] and [7] it is statistically very unlikely

that two modules produce the same fault. This is very
advantageous when trying to determine thresholds for
non-faulty values and to reduce the degree of N-variants at
each layer.
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3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-
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helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
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Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will
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In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
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helps to reduce or eliminate common mode faults. An ap-
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variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
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ties increase with the number of cores, it becomes difficult
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common applications still allow little parallelism and it is
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been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
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and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
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ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
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“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
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as was shown in [6].
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where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
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tolerance. Idle resources have also been used to increase
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“crashed” into different neighboring memory, which could
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as was shown in [6].
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tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
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ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
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The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
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Figure 4. Petri-net for F1 in Figure 3

The analysis of the multi-level and multi-layer approach
is described using the example of functionality F1 shown
in Figure 3. F1 has three levels, F 1

1 , F 2
1 and F 3

1 , and their
respective layers L1, L2 and L3 use 3-variant, 2-variant, and
simplex implementations. Given the levels of redundancy at
each layer one can note that at L1 one can mask one value
fault, at L2 one can only detect (but not mask) one fault
and L3 has neither detection nor recovery potential. The
masking and detection capabilities of functionality F 1 is
modeled in the Petri net shown in Figure 4. Note that this
net does not reflect inter-layer monitoring, which will be
addressed separately. The upper subnet models the reliability
of the layers and is controlled by the Petri nets of the triplex,
duplex and simplex of layer L1, L2 and L3 respectively.
Note that only the timed transitions of the triplex and duplex
depend on the markings of their input places, reflected by
the marking functions m(�1) and m(�2) respectively. The
simplex at layer L3 has a fail-rate of simply �3. Furthermore
note that unreliability of individual layers are the probability
of a token in the places Li

down.
Adaptability, and thus fault treatment, are modeled in the

upper part of the net. For example, layer L3 fails either due
to the firing of the transition between places V 3

up and V 3
down,

or if it is “shut down” due to a failure of a lower layer, i.e.,
should a layer at level i fail, it will automatically shut down
layer i+1, implemented by inhibitory arcs in the upper part
of the Petri net.

It is simple to establish the exact reliability of F1 when the
fail-rates are known. However, in the presence of malicious
faults, e.g., hacking attacks or exploits, the assumption of

Reliability and Resilience

30

the two variants, and only a buffer overflow that acts as a
palindrome could have the potential to succeed. The ap-
proach in [12] is similar in nature in that here memory is
partitioned in such a way that a valid access in one variant
is invalid in the other. Thus, given the schemes described in
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ties increase with the number of cores, it becomes difficult
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common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.
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tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-
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defuse buffer-overflow vulnerabilities. Variants used differ-
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where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
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of faults. The multiple executions introduce of course sig-
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and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-
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Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
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referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
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the overhead induced by the frameworks that implement re-
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more automated fashion. Again, the expectation is that a
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cases if a difference is detected between outputs generated
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The availability of unused or underutilized cores has
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been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
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security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
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and used to detect the execution of injected code. Sim-
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defuse buffer-overflow vulnerabilities. Variants used differ-
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“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
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of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
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tively. The simplex at layer L3 has a fail rate of simply �3.
Furthermore note that unreliability of individual layers are
the probability of a token in the places Li

down.
Adaptability, and thus fault treatment, are modeled in the

upper part of the net. For example, layer L3 fails if either
it fails due to the firing of the transition between places V 3

up

and V 3
down, or if it is “shut down” due to a failure of a lower

layer, i.e., should a layer at level i fail, it will automatically
shut down layer i+1, implemented by inhibitory arcs in the
upper part of the Petri net.

It is simple to establish the exact reliability of F1 when
the fail-rates are known. However, in the presence of ma-
licious faults, e.g., hacking attacks or exploits, the assump-
tion of constant fail-rates does not hold anymore. In that
case, the Petri net stays the same, whereas the formal analy-
sis of the net becomes much more complicated. The reason
is that the constant fail rates of the timed transitions have to
be replaced by time-dependent hazard functions.
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Figure 5. Cross-level monitoring

Figure 5 generalizes monitoring between two adjacent
layers. The left side of the figure shows the relationship be-
tween two levels of requirements for functionality F , i.e.,
between F i and F i+1. Note that F i � F i+1. The respec-
tive implementations are in layers Li and Li+1. Note that
layer Li+1 consists of the implementations of the operations
of the lower layer based on F i as well as the value-added
operations specified by F i+1 \ F i. Thus monitoring is lim-
ited to operations specified by F i.

The Stochastic Activity Network (SNA) of inter-layer
cross-monitoring is shown on the right side of the figure.
The transition is activated when operations specified by F i

differ in layer i and i+1, i.e., if F i(Li) ⇥= F i(Li+1), where
F i(Lj) indicates the functional specification with respect
to layer Lj . Since F i+1 includes F i the MRM indicates
fault-free behavior if F i(Li) = F i(Li+1). Let C1 be the
condition that F i(Li) ⇥= F i(Li+1)

5 Conclusion

This research defined a hierarchical formal model for N-
variant executions especially suitable for systems based on
multi-core architectures. The model has two dimensions
to support fault detection and real-time adaptation. Mul-
tiple levels of functionality are implemented in layers. At

each (horizontal) layer, N-variant implementations support
detection and masking of faults. Individual layers can in-
corporate different N-variant solutions, including existing
techniques such as in [3, 4]. Adaptation is introduced in
the other (vertical) dimension. Lower layers, which imple-
ment the essential subset of capabilities of the higher layers,
are used to cross-monitor the higher layers. This is pos-
sible due to the inclusion relationship between functional
specifications at different levels. If discrepancies are de-
tected between layers the shut-down of the higher layer is
initiated. The use of N-variant executions at individual lay-
ers has several advantages. First, lower level functionalities
can effectively cross-monitor higher layers, which has posi-
tive implications for security and reliability. Second, during
adaptation executions can be shifted to lower layers, which
increases survivability and resilience.
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The analysis of the multi-level and multi-layer approach
is described using the example of functionality F1 shown in
Figure 2. F1 has three levels, F 1

1 , F 2
1 and F 3

1 , and their re-
spective layers L1, L2 and L3 use 3-variant, 2-variant, and
simplex implementations. If we consider each layer indi-
vidually then, given the levels of redundancy, one can mask
one value fault at L1, one can only detect (but not mask)
one fault at L2, and there is neither detection nor correction
potential at L3.

The reliability and survivability of functionality F 1 is
modeled in the generalized stochastic Petri net shown in
Figure 3. The net is drawn as three subnets: the cross-
layer monitor, the layer control and the layer implementa-
tion. The three N-variant layers are modeled in the three
subnets of the layer implementation subnet and represent
the TMR, duplex and simplex models of layers L1, L2 and
L3 respectively. Each of these three simple nets only model
their associated layer in isolation, i.e., they constitute 2-of-
3, 2-of-2, and 1-of-1 systems. Note that only the timed tran-
sitions of the TMR and duplex depend on the markings of
their input places, reflected by the marking functions m(�1)
and m(�2) respectively. The simplex at layer 3 has a fail
rate of simply �3.

The layer control subnet models the interaction between
layers, which are assumed to be either up or down. Initially
all three layers are up as indicated by the single tokens in
places L1

up, L
2
up and L3

up. If a layer fails, i.e., if the thresh-

old of tokens is reached in one of the subnets of the layer
implementation subnet, the layer control subnet automati-
cally disables the corresponding layer and all higher layers
as well, i.e., failure at layer i will shut down all layers � i.
For example, a failure of one of the variants in layer 2 re-
sults in a token being absorbed in place V 2

up. This in turn
disables the inhibitory arc at V 2

up (which needs two tokes to
inhibit) and the associated transition will “move” the token
from L2

up to L2
down in the layer control subnet. The lack

of a token in L2
up will cause the transition between L3

up and
L3

down to fire. The result is that both L2
down and L3

down have
a single token. The probability of a token in place Li

down is
thus the unreliability of layer Li. Alternatively, the proba-
bility of a token in place Li

up is the reliability of Li.

Li

Li+1

Fi

Fi FiF i+1

Li

Li+1

Fi
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Figure 4. Cross-layer monitoring scope

Monitoring across layers is modeled with the cross-layer
monitoring subnet of Figure 3. To describe the exact ap-
proach for cross-layer monitoring consider Figure 4, which
shows the relationship between two levels of requirements
for functionality F , i.e., between F i and F i+1. Cross-
monitoring of layer Li on Li+1 is achieved by comparing
results from Li+1 to those computed by the more reliable
layer Li. However, the functional capabilities of the layers
are not the same, e.g., as was shown in Figure 1. This makes
realistic cross-layer monitoring dependent on the computa-
tions of F i+1 and F i that can be effectively compared. The
resulting extreme cases are shown in Figure 4. To the left
we have the scenario in which layer Li can monitor all func-
tionalities of layer Li+1.

This is different in the right scenario in which layer Li

can only monitor a subset of the functionality at layer Li+1.
Note that F i ⇥ F i+1. The respective implementations are
in layers Li and Li+1. Note that layer Li+1 consists of the
implementations of the operations of the lower layer based
on F i as well as the value-added operations specified by
F i+1 \ F i. Thus cross-layer monitoring is limited to op-
erations specified by F i. Realistic cross-layer monitoring
is anywhere in-between the two extreme scenarios and is
application dependent.

The Stochastic Activity Network (SNA) of the cross-
layer monitoring is shown in Figure 5. The transition is
activated when operations specified by F i differ in layer Li

and Li+1, i.e., if F i(Li) ⇤= F i(Li+1), where F i(Lj) indi-
cates the functional specification with respect to layer Lj .
Since F i+1 includes F i the MRM indicates fault-free be-
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the two variants, and only a buffer overflow that acts as a
palindrome could have the potential to succeed. The ap-
proach in [12] is similar in nature in that here memory is
partitioned in such a way that a valid access in one variant
is invalid in the other. Thus, given the schemes described in
[8] and [12] it is statistically very unlikely that two modules
produce the same fault as the result of code injection.A Hierarchical Formal Model for N-variant Executions in Multi-core Systems
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3 Introduction

Most new general purpose computers incorporate dual
or quad-core processors and higher numbers of cores are on
the horizon. Whereas in theory the computational capabili-
ties increase with the number of cores, it becomes difficult
to exploit sufficient parallelism to keep cores utilized. Most
common applications still allow little parallelism and it is
likely that cores may be underutilized or running idle.

Redundant executions to benefit reliability has been ex-
tensively used in fault-tolerant systems design where the
evolutions of redundancy schemes has gone from homo-
geneous redundancy to heterogeneous systems. Heteroge-
neous redundancy implies that dissimilar redundant func-
tionalities are executed under the assumption that this will

reduce or eliminate common mode faults. Dissimilarity is
typically discussed in the context of N-version program-
ming dating back the late 70s [1] and N-variant programs.
In N-version programming it is assumed that several soft-
ware development groups derive programs based on the
same specification in isolation. The expectation is that this
helps to reduce or eliminate common mode faults. An ap-
proach inspired by N-version software is N-variant or multi-
variant software, where different variants are generated in a
more automated fashion. Again, the expectation is that a
fault affecting one variant will not affect another. In both
cases if a difference is detected between outputs generated
by two versions or variants a fault is detected.

The availability of unused or underutilized cores has
been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
tiple variants execute in order to allow detection or masking
of faults. The multiple executions introduce of course sig-
nificant overhead. In fact, N-folding the amount of work
to be done is even augmented with the overhead of man-
aging the different variants. However, given the availabil-
ity of slack-time in cores this overhead has to potential to
be reasonably absorbed. If variants can execute on idle
cores, then this overhead can be absorbed. What rests is
the overhead induced by the frameworks that implement re-
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been exploited to increase reliability, security and surviv-
ability. Redundant executions in multi-core systems has
been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
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ilarely, multi-variate program execution as used in [7] to
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“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
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as was shown in [6].
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defuse buffer-overflow vulnerabilities. Variants used differ-
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“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].
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been considered in [4] in the context of transient faults,
where the number of replicas determined the degree of fault
tolerance. Idle resources have also been used to increase
security. For example, in [3] a set of automatically diversi-
fied variants execute on the same inputs. Any difference in
referencing memory of different variants can be observed
and used to detect the execution of injected code. Sim-
ilarely, multi-variate program execution as used in [7] to
defuse buffer-overflow vulnerabilities. Variants used differ-
ent directions in memory allocation so that buffer overflows
“crashed” into different neighboring memory, which could
be detected. The concept of N-variance can also be applied
to the representation of data, rather than only the programs,
as was shown in [6].

The common threat in the previous research is that mul-
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as was shown in [6].
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tively. The simplex at layer L3 has a fail rate of simply �3.
Furthermore note that unreliability of individual layers are
the probability of a token in the places Li

down.
Adaptability, and thus fault treatment, are modeled in the

upper part of the net. For example, layer L3 fails if either
it fails due to the firing of the transition between places V 3

up

and V 3
down, or if it is “shut down” due to a failure of a lower

layer, i.e., should a layer at level i fail, it will automatically
shut down layer i+1, implemented by inhibitory arcs in the
upper part of the Petri net.

It is simple to establish the exact reliability of F1 when
the fail-rates are known. However, in the presence of ma-
licious faults, e.g., hacking attacks or exploits, the assump-
tion of constant fail-rates does not hold anymore. In that
case, the Petri net stays the same, whereas the formal analy-
sis of the net becomes much more complicated. The reason
is that the constant fail rates of the timed transitions have to
be replaced by time-dependent hazard functions.
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Figure 5. Cross-level monitoring

Figure 5 generalizes monitoring between two adjacent
layers. The left side of the figure shows the relationship be-
tween two levels of requirements for functionality F , i.e.,
between F i and F i+1. Note that F i � F i+1. The respec-
tive implementations are in layers Li and Li+1. Note that
layer Li+1 consists of the implementations of the operations
of the lower layer based on F i as well as the value-added
operations specified by F i+1 \ F i. Thus monitoring is lim-
ited to operations specified by F i.

The Stochastic Activity Network (SNA) of inter-layer
cross-monitoring is shown on the right side of the figure.
The transition is activated when operations specified by F i

differ in layer i and i+1, i.e., if F i(Li) ⇥= F i(Li+1), where
F i(Lj) indicates the functional specification with respect
to layer Lj . Since F i+1 includes F i the MRM indicates
fault-free behavior if F i(Li) = F i(Li+1). Let C1 be the
condition that F i(Li) ⇥= F i(Li+1)

5 Conclusion

This research defined a hierarchical formal model for N-
variant executions especially suitable for systems based on
multi-core architectures. The model has two dimensions
to support fault detection and real-time adaptation. Mul-
tiple levels of functionality are implemented in layers. At

each (horizontal) layer, N-variant implementations support
detection and masking of faults. Individual layers can in-
corporate different N-variant solutions, including existing
techniques such as in [3, 4]. Adaptation is introduced in
the other (vertical) dimension. Lower layers, which imple-
ment the essential subset of capabilities of the higher layers,
are used to cross-monitor the higher layers. This is pos-
sible due to the inclusion relationship between functional
specifications at different levels. If discrepancies are de-
tected between layers the shut-down of the higher layer is
initiated. The use of N-variant executions at individual lay-
ers has several advantages. First, lower level functionalities
can effectively cross-monitor higher layers, which has posi-
tive implications for security and reliability. Second, during
adaptation executions can be shifted to lower layers, which
increases survivability and resilience.
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Figure 3. Complete GSPN Model

The analysis of the multi-level and multi-layer approach
is described using the example of functionality F1 shown in
Figure 2. F1 has three levels, F 1

1 , F 2
1 and F 3

1 , and their re-
spective layers L1, L2 and L3 use 3-variant, 2-variant, and
simplex implementations. If we consider each layer indi-
vidually then, given the levels of redundancy, one can mask
one value fault at L1, one can only detect (but not mask)
one fault at L2, and there is neither detection nor correction
potential at L3.

The reliability and survivability of functionality F 1 is
modeled in the generalized stochastic Petri net shown in
Figure 3. The net is drawn as three subnets: the cross-
layer monitor, the layer control and the layer implementa-
tion. The three N-variant layers are modeled in the three
subnets of the layer implementation subnet and represent
the TMR, duplex and simplex models of layers L1, L2 and
L3 respectively. Each of these three simple nets only model
their associated layer in isolation, i.e., they constitute 2-of-
3, 2-of-2, and 1-of-1 systems. Note that only the timed tran-
sitions of the TMR and duplex depend on the markings of
their input places, reflected by the marking functions m(�1)
and m(�2) respectively. The simplex at layer 3 has a fail
rate of simply �3.

The layer control subnet models the interaction between
layers, which are assumed to be either up or down. Initially
all three layers are up as indicated by the single tokens in
places L1

up, L
2
up and L3

up. If a layer fails, i.e., if the thresh-

old of tokens is reached in one of the subnets of the layer
implementation subnet, the layer control subnet automati-
cally disables the corresponding layer and all higher layers
as well, i.e., failure at layer i will shut down all layers � i.
For example, a failure of one of the variants in layer 2 re-
sults in a token being absorbed in place V 2

up. This in turn
disables the inhibitory arc at V 2

up (which needs two tokes to
inhibit) and the associated transition will “move” the token
from L2

up to L2
down in the layer control subnet. The lack

of a token in L2
up will cause the transition between L3

up and
L3

down to fire. The result is that both L2
down and L3

down have
a single token. The probability of a token in place Li

down is
thus the unreliability of layer Li. Alternatively, the proba-
bility of a token in place Li

up is the reliability of Li.

Li

Li+1

Fi

Fi FiF i+1

Li

Li+1

Fi

F i+1

Figure 4. Cross-layer monitoring scope

Monitoring across layers is modeled with the cross-layer
monitoring subnet of Figure 3. To describe the exact ap-
proach for cross-layer monitoring consider Figure 4, which
shows the relationship between two levels of requirements
for functionality F , i.e., between F i and F i+1. Cross-
monitoring of layer Li on Li+1 is achieved by comparing
results from Li+1 to those computed by the more reliable
layer Li. However, the functional capabilities of the layers
are not the same, e.g., as was shown in Figure 1. This makes
realistic cross-layer monitoring dependent on the computa-
tions of F i+1 and F i that can be effectively compared. The
resulting extreme cases are shown in Figure 4. To the left
we have the scenario in which layer Li can monitor all func-
tionalities of layer Li+1.

This is different in the right scenario in which layer Li

can only monitor a subset of the functionality at layer Li+1.
Note that F i ⇥ F i+1. The respective implementations are
in layers Li and Li+1. Note that layer Li+1 consists of the
implementations of the operations of the lower layer based
on F i as well as the value-added operations specified by
F i+1 \ F i. Thus cross-layer monitoring is limited to op-
erations specified by F i. Realistic cross-layer monitoring
is anywhere in-between the two extreme scenarios and is
application dependent.

The Stochastic Activity Network (SNA) of the cross-
layer monitoring is shown in Figure 5. The transition is
activated when operations specified by F i differ in layer Li

and Li+1, i.e., if F i(Li) ⇤= F i(Li+1), where F i(Lj) indi-
cates the functional specification with respect to layer Lj .
Since F i+1 includes F i the MRM indicates fault-free be-

Stochastic Activity Networks
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Example: 
Möbius

check out 
www.mobius.illinois.edu
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Li

Li+1
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up
Li+1
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i ! F  (L    )i i+1F  (L )i

Figure 5. SAN for cross-layer monitoring

havior if F i(Li) = F i(Li+1).
Cross-layer monitoring is modeled in the cross-layer

monitoring subnet of Figure 3 by translating the condition
F i(Li) ⌃= F i(Li+1) of the SAN in Figure 5 into cross-
monitoring detection rates Ci in the GSPN.

It is simple to establish the exact reliability of functional-
ity F1 when the fail-rates are known. However, in the pres-
ence of malicious faults, e.g., hacking attacks or exploits,
the assumption of constant fail-rates does not hold anymore.
In that case, the GSPN stays the same, whereas the formal
analysis of the net becomes much more complicated. The
reason is that the constant fail rates of the timed transitions
have to be replaced by time-dependent hazard functions.

The GSPN of Figure 3 will be the basis for the reliability
simulations in Section 6.

5 Stochastic Models

To evaluate the performance of our architecture, we
model its stochastic behavior using probabilistic models.
Next, we use probabilistic model checking to study the per-
formance of the model. Particularly, we are interested in
two metrics: service availability and information security.
To illustrate our approach on stochastic modeling and per-
formance analysis, we will use an example based on layer
L1 of the service F1 in Figure 2.

The first step of performance modeling and analysis is
to build a stochastic model for the proposed N-variant ar-
chitecture. Following the same component-based design as
discussed in Section 2.2, our model is a parallel composi-
tion of layers and the Monitoring and Reconfiguration Mod-
ule (MRM), which in turn is a parallel composition of Mon-
itoring and Reconfiguration Sub-Modules (MRSM). Each
MRSM is associated with a layer. The MRSM monitors and
reconfigures its associated layer by using the output from
the layer below. Note that this is consistent with the cross-
layer monitoring SAN shown in Figure 5.

Preliminary Components are modeled as an extension of
probabilistic finite automata [7]. We model our architecture
as a probabilistic finite automaton. A probabilistic finite
automaton extends transitions in a finite automaton with
probabilities. Formally a probabilistic automata is a tuple
⌥Q,�, �, Q0, F, P�, P0�, where,

1. Q is a set of states;

2. � is a set of input symbols;

3. � ⇥ P ��� P is a set of transitions;

4. Q0 ⇥ Q is a set of start states;

5. F ⇥ Q is a set of accepting states;

6. P� : � ⌅ (0, 1] assigns each transition a probabil-
ity. In addition, for each (p, a, p⇥) ⇧ �, we have
⇤q⇤{q | (p,a,q)⇤�} = 1. That is, the accumulative prob-
ability of all the transitions enabled by a symbol a shall
be 1;

7. P0 : Q0 ⌅ (0, 1] assigns each transition a probability.
In addition, ⇤q⇤Q0P0(q) = 1.

A successful run of the probabilistic automaton
⌥Q,�, �, Q0, F, P�, P0� is a sequence q0

a1⌅ q1 · · · an⌅ qn

such that q0 ⇧ Q0, (qi, ai+1, qi+1) ⇧ � for 0 ⇤ i < n, and
qn ⇧ F . Given a sequence of input symbols a1 · · · an, the
probability that the automaton runs the sequence q0

a1⌅ q1

· · · an⌅ qn is P0(q0)�⇥0�i<nP�((qi, ai+1, qi+1)).
In this paper, we use an extension of probabilistic au-

tomata that include the support for state variables and input
variables. A state is designated by a Boolean formula over
state variables. The Boolean formula must be true when
the state is active. Input variables are used to describe en-
vironmental inputs. Instead of input symbols, transitions
are guarded by a Boolean formula over input and state vari-
ables. A transition is enabled if its source state is active and
its guard is true. The constraint on P0 still holds on this ex-
tension of probabilistic finite automaton: the accumulative
probability of all the enabled transitions is 1.

Stochastic Models of N-variant layers Figure 6 shows a
probabilistic automaton that models L1 of F1 in Figure 2.
It describes that the behaviors of 3 variants in L1 and also a
built-in voting mechanism that decides which variant(s) are
still working.
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(v(1) = 3) ! w(1) ! ¬e(1)

(v(1) = 3) ! w(1) ! e(1)

(v(1) = 2) ! w(1) ! ¬e(1)
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Figure 6. Probabilistic automaton for L1 of F1

Note the difference between GSPN and SAN (Stochastic 
Activity Network)

Stochastic Models
Evaluation of performance of architecture

model stochastic behavior using probabilistic models

use probabilistic model checking

Metrics of interest

service availability

information security

34
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N-tuple ⌃Q, �, ⌅, Q0, F, P�, P0⌥

1. Q is a set of states,
2. � is a set of input symbols,
3. ⌅ ⇥ Q�� �Q is a set of transitions,
4. Q0 ⇥ Q is a set of start states,
5. F ⇥ Q is a set of accepting states,
6. P� : ⌅ ⌅ (0, 1] assigns each transition a probability, and
7. P0 : Q0 ⌅ (0, 1] assigns each start state a probability.

In addition, ⇤q⇤Q0P0(q) = 1 and for each (p, a, p⇥) ⇧ ⌅, ⇤q⇤{q | (p,a,q)⇤�}P�((p, a, q)) =
1.

A successful run of the probabilistic automaton B = ⌃Q, �, ⌅, Q0, F, P�, P0⌥
is a sequence ⇧ = q0

a1⌅ q1 · · · an⌅ qn such that q0 ⇧ Q0, (qi, ai+1, qi+1) ⇧ ⌅ for
0 ⇤ i < n, and qn ⇧ F . Given a sequence of inputs a1 · · · an, the probability that
the automaton B runs ⇧ is P0(q0)�⇥0�i<nP�((qi, ai+1, qi+1)).

In this paper, we use an extension of probabilistic automata that supports
state variables and input variables. A state is designated by a predicate over state
variables. The predicate must be true when the state is active. Input variables
describe environmental inputs. Instead of input symbols, transitions are guarded
by a predicate over input and state variables. A transition is enabled if its source
state is active and its guard is true.

Stochastic Models of N-variant layers: Figure 6 shows a probabilistic automaton
that models L1 of F1 in Figure 2. It describes the behaviors of 3 variants in L1

and also a built-in voting mechanism that decides which variant(s) are working.
Models of N-variant layers use three state variables:

1. v is the number of working variants. The built-in voting mechanism decides
the status of variants by applying a threshold voting function. For example,
if value faults are considered and only 2 of 3 working variants produce the
same result, then simple majority vote will update the status of the minority
variant as not working.

2. w is the status of a layer. Initially all layers are working. If all the variants in
a layer are marked as not working, the layer will be marked as not working.
It should be noted that a variant marked working may still produce incorrect
results, as indicated by its e flag.

3. e is an error flag. e = true indicates that an erroneous output is produced
by the layer. This could happen when, for example, all the working variants
produce the exact same erroneous output, although its probability is small
due to N-variant implementation.

The superscript (i) on variables indicate which layer they are associated to.
For example, v(1) indicates the number of working variants in layer L1. We
also use the following notations: given n variants, Pk|n is the probability that
the maximal number of variants producing the same result is k and there are
k variants producing the same correct result; Qk|n is the probability that the
maximal number of variants producing the same result is k and there are no k
variants producing the same correct result.

Probabilistic automaton:
Example 1

36
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Figure 6. Probabilistic automaton for L1 of F1

2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-

A successful run of the probabilistic automaton B = hQ, ⇥, �, Q0, F, P
�

, P0i
is a sequence ⇢ = q0

a1! q1 · · · an! q
n

such that q0 2 Q0, (q
i

, a
i+1, qi+1) 2 � for

0  i < n, and q
n

2 F . Given a sequence of inputs a1 · · · a
n

, the probability that
the automaton B runs ⇢ is P0(q0)⇥⇧0i<n

P
�

((q
i

, a
i+1, qi+1)).

In this paper, we use an extension of probabilistic automata that supports
state variables and input variables. A state is designated by a predicate over state
variables. The predicate must be true when the state is active. Input variables
describe environmental inputs. Instead of input symbols, transitions are guarded
by a predicate over input and state variables. A transition is enabled if its source
state is active and its guard is true.

Stochastic Models of N-variant layers: Figure 6 shows a probabilistic automaton
that models L1 of F1 in Figure 2. It describes the behaviors of 3 variants in L1

and also a built-in voting mechanism that decides which variant(s) are working.
Models of N-variant layers use three state variables:
1. v is the number of working variants. The built-in voting mechanism decides

the status of variants by applying a threshold voting function. For example,
if value faults are considered and only 2 of 3 working variants produce the
same result, then simple majority vote will update the status of the minority
variant as not working.

2. w is the status of a layer. Initially all layers are working. If all the variants in
a layer are marked as not working, the layer will be marked as not working.
It should be noted that a variant marked working may still produce incorrect
results, as indicated by its e flag.

3. e is an error flag. e = true indicates that an erroneous output is produced
by the layer. This could happen when, for example, all the working variants
produce the exact same erroneous output, although its probability is small
due to N-variant implementation.
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The superscript (i) on variables indicate which layer they are associated to.
For example, v(1) indicates the number of working variants in layer L1. We
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(v(1) = 3) ! w(1) ! ¬e(1)

(v(1) = 3) ! w(1) ! e(1)
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2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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Figure 6. Probabilistic automaton for L1 of F1

2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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Figure 5. SAN for cross-layer monitoring

havior if F i(Li) = F i(Li+1).
Cross-layer monitoring is modeled in the cross-layer

monitoring subnet of Figure 3 by translating the condition
F i(Li) ⌃= F i(Li+1) of the SAN in Figure 5 into cross-
monitoring detection rates Ci in the GSPN.

It is simple to establish the exact reliability of functional-
ity F1 when the fail-rates are known. However, in the pres-
ence of malicious faults, e.g., hacking attacks or exploits,
the assumption of constant fail-rates does not hold anymore.
In that case, the GSPN stays the same, whereas the formal
analysis of the net becomes much more complicated. The
reason is that the constant fail rates of the timed transitions
have to be replaced by time-dependent hazard functions.

The GSPN of Figure 3 will be the basis for the reliability
simulations in Section 6.

5 Stochastic Models

To evaluate the performance of our architecture, we
model its stochastic behavior using probabilistic models.
Next, we use probabilistic model checking to study the per-
formance of the model. Particularly, we are interested in
two metrics: service availability and information security.
To illustrate our approach on stochastic modeling and per-
formance analysis, we will use an example based on layer
L1 of the service F1 in Figure 2.

The first step of performance modeling and analysis is
to build a stochastic model for the proposed N-variant ar-
chitecture. Following the same component-based design as
discussed in Section 2.2, our model is a parallel composi-
tion of layers and the Monitoring and Reconfiguration Mod-
ule (MRM), which in turn is a parallel composition of Mon-
itoring and Reconfiguration Sub-Modules (MRSM). Each
MRSM is associated with a layer. The MRSM monitors and
reconfigures its associated layer by using the output from
the layer below. Note that this is consistent with the cross-
layer monitoring SAN shown in Figure 5.

Preliminary Components are modeled as an extension of
probabilistic finite automata [7]. We model our architecture
as a probabilistic finite automaton. A probabilistic finite au-
tomaton extends transitions in a finite automaton with prob-
abilities. Formally

A probabilistic automata is a tuple
⌥Q,�, �, Q0, F, P�, P0�, where,

1. Q is a set of states;

2. � is a set of input symbols;

3. � ⇥ P ��� P is a set of transitions;

4. Q0 ⇥ Q is a set of start states;

5. F ⇥ Q is a set of accepting states;

6. P� : � ⌅ (0, 1] assigns each transition a probabil-
ity. In addition, for each (p, a, p⇥) ⇧ �, we have
⇤q⇤{q | (p,a,q)⇤�} = 1. That is, the accumulative prob-
ability of all the transitions enabled by a symbol a shall
be 1;

7. P0 : Q0 ⌅ (0, 1] assigns each transition a probability.
In addition, ⇤q⇤Q0P0(q) = 1.

A successful run of the probabilistic automaton
⌥Q,�, �, Q0, F, P�, P0� is a sequence q0

a1⌅ q1 · · · an⌅ qn

such that q0 ⇧ Q0, (qi, ai+1, qi+1) ⇧ � for 0 ⇤ i < n, and
qn ⇧ F . Given a sequence of input symbols a1 · · · an, the
probability that the automaton runs the sequence q0

a1⌅ q1

· · · an⌅ qn is P0(q0)�⇥0�i<nP�((qi, ai+1, qi+1)).
In this paper, we use an extension of probabilistic au-

tomata that include the support for state variables and input
variables. A state is designated by a Boolean formula over
state variables. The Boolean formula must be true when
the state is active. Input variables are used to describe en-
vironmental inputs. Instead of input symbols, transitions
are guarded by a Boolean formula over input and state vari-
ables. A transition is enabled if its source state is active and
its guard is true. The constraint on P0 still holds on this ex-
tension of probabilistic finite automaton: the accumulative
probability of all the enabled transitions is 1.

Stochastic Models of N-variant layers Figure 6 shows a
probabilistic automaton that models L1 of F1 in Figure 2.
It describes that the behaviors of 3 variants in L1 and also a
built-in voting mechanism that decides which variant(s) are
still working.

A state is designated by a Boolean formula that holds
true. In the example shown in Figure 6 formulae contain
the following three state variables:

1. v, the number of working variants. The built-in vot-
ing mechanism decides the status of variants by simple
majority. For example, if at the start of a clock cycle
all 3 variants are working and during the cycle only 2
of 3 variants produce the same result, then the voting
mechanism will mark these 2 variants as working, and
the other one as not working;
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Figure 6. Probabilistic automaton for L1 of F1

2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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Figure 6. Probabilistic automaton for L1 of F1

2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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Figure 6. Probabilistic automaton for L1 of F1

2. w, the status of a layer. Initially all layers are work-
ing. If at one point the voting mechanism cannot de-
cide which variant it can trust, for instance, in case that
all 2 working variants report different value, it simply
marks the layer as not working;

3. e, the error flag. e = true indicates that an erroneous
output is produced by the layer. This could happen
when, for example, all the working variants produce
the exactly same erroneous output, although this is a
very unlikely scenario especially when we apply N-
variant technique. We will discuss this in more details
later.

We use the following notations in Figure 6:
Pk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is correct.

Qk|n is the probability that,

1. The maximal number of n variants producing the same
result is k, and;

2. The result is incorrect.

The superscript (i) on these variables indicate which layer
they are associated to. For example, v(1) indicates the num-
ber of working variants in layer L1.

Stochastic Models of MRMs Since the functional capa-
bility of the higher layer subsumes that of the lower layer,
the output from a layer can be used to monitor the layer
above for the services provided by both layers. This is im-
plemented by the Monitoring and Reconfiguration Module
(MRM), as described in Section 3. In addition, the MRM
also decides whether the higher layer shall be disabled when
there is a discrepancy in the common services provided by
two adjacent layers.

The MRM is a collection of Monitoring and Reconfigu-
ration Sub-Module (MRSM), each of which monitors a par-
ticular layer using the output from the layer below. Figure

7 shows a probabilistic automaton that models the MRSM
for layer L2.

Similar to Figure 6, states are designated by formulae.
Formulae use the following two variables:

1. d, a Boolean variable indicating whether a layer is dis-
abled by the MRM or not.

2. c, a Boolean variable indicating whether a layer is
compromised.

Q(1,2) in Figure 7 is the probability that two layers produce
the same erroneous output when layer L1 is working and
not disabled by the MRSM1, layer L2 is working, and both
layers produce erroneous results (i.e. ¬d(1) ⇥w(1) ⇥w(2) ⇥
e(1) ⇥ e(2))).

MRSM2 uses the output from L1 to monitor L2. If both
layers are deemed as working by their voting mechanism,
then MRSM2 compares the outputs from both layers. Since
L2 subsumes L1 in terms of capability, the output from L2

used for comparison is a subset of the output from L2 with
respect to the capability of L1. There are several scenarios:

1. If either L1 is not functioning (disabled by MRSM1
or deemed as not working by its voting mechanism) or
L2 is deemed as not working, L2 is disabled. Note that
we are not considering the recovery of a layer in this
paper. Instead, recovery is implemented by shifting to
a lower layer. Thus, once L2 is disabled, it is never
reinstated;

2. Otherwise, MRSM2 compares the outputs of L1 and
L2 with respect to the functional capability level of L1;

(a) If two outputs are different, then MRSM2 dis-
ables L2. Note that in our framework, a lower
layer has a lower capability but it has better in-
formation security by deploying more variants.
Since MRSM2 cannot tell which output is right,
it assumes L2 as incorrect and hence disables
it. The causes for two different outputs could
be (1) one of layers produces an incorrect out-
put but the other produces the correct one (i.e.
(¬e1 ⇥ e2) ⇤ (e1 ⇥ ¬e2)), or (2) both layers pro-
duce incorrect results and the results are different
(with probability 1�Q(1,2)).

(b) If two outputs are same, then L2 continues to
function. The causes for the same outputs could
be (1) both layers produce the correct output, or
(2) both layers produce incorrect results and the
results are same (with probability Q(1,2)). In
the latter case the output of L2 is compromised
(c(2) = true).

5.1 Error distribution and model parameters

In our performance analysis, we consider different sce-
narios of probability and error distributions. In our discus-
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[¬d(1) ! w(1) ! w(2) !
!
(e(1) ! ¬e(2)) " (e(1) ! ¬e(2))

"
]

¬d(2) ! ¬c(2)

d(2)

[d(1) " ¬w(1) " ¬w(2)]

¬d(2) ! c(2)

[¬d(1) ! w(1) ! w(2) ! e(1) ! e(2))] : Q(1,2)

[¬d(1) ! w(1) ! w(2) ! ¬e(1) ! ¬e(2))] : 1#Q(1,2)
[¬d(1) ! w(1) ! w(2) ! ¬e(1) ! ¬e(2)]

[¬d(1) ! w(1) ! w(2) ! ¬e(1) ! ¬e(2))] : 1#Q(1,2)

[¬d(1) ! w(1) ! w(2) ! e(1) ! e(2))] : Q(1,2)

[d(1) " ¬w(1) " ¬w(2)]

[¬d(1) ! w(1) ! w(2) ! ¬e(1) ! ¬e(2)]

[¬d(1) ! w(1) ! w(2) !
!
(e(1) ! ¬e(2)) " (e(1) ! ¬e(2))

"
]

Figure 7. Probabilistic automaton for the Monitoring and Reconfiguration Sub-Module in layer 2
(MRSM2).

sion, we denote N for the size of the sample space for out-
puts from layers. That is, N is the number of data points
that an output can take value from. We also assume that
there is only one data point deemed to be correct at a given
time for a given output. As stated before, P (j)

1|k for the prob-
ability that a variant among k working variants on layer j
produces the correct result. The possibility that all the k
variants on layer j produce the correct result, denoted as
P (j)

k|k , is P (j)
k|k = (P (j)

1|k )k · s(j)
k , where 0 < s(j)

k ⇥ (P (j)
1|k )1�k

and s(j)
k = 1. The possibility that all the k working vari-

ants on layer j produce the exactly same erroneous re-

sult, denoted as Q(j)
k|k, is Q(j)

k|k =
(1�P (j)

1|k)k

(N�1)k�1 · d(j)
k , where

0 < d(j)
k ⇥

(N�1)k�1·
“
1�(P (j)

1|k)k·s(j)
k

”

(1�P (j)
1|k)k

and d(j)
k = 1. We

refer to s(j)
k and d(j)

k as the correct and error similarity co-
efficients.

Intuitively s(j)
k and d(j)

k describe how similar k variants
in Lj are. To see the meaning of s(j)

k and d(j)
k , let’s consider

the following scenarios,

I. Let’s consider s(j)
k = (P (j)

1|k )1�k and,

d(j)
k =

(N�1)k�1·
“
1�(P (j)

1|k)k·s(j)
k

”

(1�P (j)
1|k)k

= (N�1)k�1

(1�P (j)
1|k)k�1

Therefore, we have,

P (j)
k|k = (P (j)

1|k )k · s(j)
k

= P (j)
1|k

and,

Q(j)
k|k =

(1�P (j)
1|k)k

(N�1)k�1 · dk,j

=
(1�P (j)

1|k)k

(N�1)k�1 · (N�1)k�1

(1�P (j)
1|k)k�1

= 1� P (j)
1|k

= Q(j)
1|k

In this scenario, all the k variants of software are the
exact duplicates of each other, so these variants shall
behave just as one variant. Note that in reality, the er-
rors may be introduced by the environment of these
variants, for instance, the underlying operating system
or hardware, so this scenario serves only for the pur-
pose of helping readers see what happens when all the
k variants achieve the maximal similarity.

II. Let’s consider s(j)
k = 1 and d(j)

k = 1. Therefore we
have,

P (j)
k|k = (P (j)

1|k )k · s(j)
k

= (P (j)
1|k )k (1)

Computational Experiments
Analysis used:

Symbolic Hierarchical Automated Reliability/Performance 
Evaluator (SHARPE) to analyze GSPNs

Probabilistic model checker PRISM to analyze the 
probabilistic automaton-based model
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GSPN model

Probability 
Automaton-based
 model

Conclusions
Hierarchical Formal Model was introduced

Adaptive Functional Capability Model (AFCM)

Multi-layer architecture

Adaptation capabilities

Reconfiguration capabilities

Use Petri Net to deal with design specification 
experimentation

Use model checking to go from design to implementation
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