
•

•

CS448/548 Sequence 16

Decentralized Services

◆ We want to take a look at decentralization as a way
towards survivability

◆ The case study is: Survivable Storage Systems
– What is Survivable Storage
– Have we seen “flavors” of such concept before?

» RAID technology can be considered survivable
» However, malicious concepts were not considered

– We want to look at the PASIS project
» basis for the discussion on Survivable Storage are the

PASIS papers
■ http://www.pdl.cmu.edu/Pasis/

1

•

•

CS448/548 Sequence 16

Decentralization

– Before discussing Survivable Storage, I would like to briefly
discuss the concept of RAIDs and how it plays into “thinking
survivable”

» The basis for the RAID discussion is the 1988 paper by Patterson
■ Patterson, D.A., et. al., “A Case for Redundant Arrays of Inexpensive

Disks (RAID)”, ACM SIGMOD Records, International Conference on
Management of Data, Vol.~17, No.~3, pp.~109-116, June~1988.

» The following material is probably to detailed for our discussion. I
will only outline the basic concepts of RAID, as they will help to get
a feeling for the performance issues associated with survivable
storage

» Note that the Patterson paper is very dated, yet, there are very
interesting issues that are still valid!

2

•

•

CS448/548 Sequence 16

RAID

◆ RAID Redundant Arrays of Inexpensive Disks
◆ Motivation

– single chip computers improved in performance by 40% per
year

– RAM capacity quadrupled capacity every 2-3 years
– Disks (magnetic technology)

» capacity doubled every 3 years
» price cut in half every 3 years
» raw seek time improved 7% every year

– Note: values presented in Pattersons’ paper are dated!
– Note: paper discusses “pure” RAID, not smarter

implementations, e.g. caching.

3

•

•

CS448/548 Sequence 16

RAID

– Amdahl’s Law:

 Effective Speedup

» f = fraction of work in fast mode
» k = speedup while in fast mode

 Example:
» assume 10% I/O operation
» if CPU 10x => effective speedup is 5
» if CPU 100x => effective speedup is 10

■ 90 % of potential speedup is wasted

4

•

•

CS448/548 Sequence 16

RAID
◆ Motivation

– compare “mainframe mentality” with “today's” possibilities, e.g. cost,
configuration

•

•

•

•

•

•

•

•

• CPU

• Memory • Channel

Controller•

•

•

•

•

•

•

•

•

• SCSI

• CPU

• Memory • DMA

Mainframe Small Computer

5

•

•

CS448/548 Sequence 16

RAID

– Reliability

– e.g. MTTFdisk = 30,000 h
 MTTF100 = 300 h (< 2 weeks)
 MTTF1000 = 30 h
– Note, that these numbers are very dated. Todays drives

are much better. MTBF > 300,000 to 800,000 hours.
– Is that really true though?????

– even if we assume higher MTTF of individual disks, the
problem stays.

Bad news!

6

•

•

CS448/548 Sequence 16

RAID
◆ RAID Reliability

– partition disks into reliability groups and check disks
» D = total number of data disks
» G = # data disks in group
» C = # check disks in group

7

•

•

CS448/548 Sequence 16

RAID

◆ Target Systems
– Different RAID solutions will benefit different target

system configurations.
– Supercomputers

» larger blocks of data, i.e. high data rate
– Transaction processing

» small blocks of data
» high I/O rate
» read-modify-write sequences

8

•

•

CS448/548 Sequence 16

RAID

◆ 5 RAID levels
– RAID 1: mirrored disks
– RAID 2: hamming code for ECC
– RAID 3: single check disk per group
– RAID 4: independent read/writes
– RAID 5: no single check disk

9

•

•

CS448/548 Sequence 16

RAID
◆ other RAIDs (derived after the paper)

– RAID 0
» employs striping with no redundancy at all
» claim of fame is speed alone
» has best write performance, but not the best read

performance
■ why? (other RAIDs can schedule requests on the disk with

the shortest expected seek and rotational delay)
– RAID 6 (P + Q Redundancy)

» uses Reed-Solomon code to protect against up to 2 disk
failures using the bare minimum of 2 redundant disks.

10

14

RAID 0 (non-redundant)

15

RAID 1 (mirrored)

16

RAID 2 (redundancy through
Hamming code)

17

RAID 3 (bit-interleaved
parity)

18

RAID 4 (block-level parity)

19

RAID 5 (block-level
distributed parity)

20

RAID 6 (dual redundancy)

 © 2013 A.W. Krings

RAID 10
RAID 10 is sometimes also called RAID 1+0

18
source: http://www.illinoisdataservices.com/raid-10-data-recovery.html

 © 2013 A.W. Krings

RAID 0+1

19
source: http://www.illinoisdataservices.com/raid-10-data-recovery.html

•

•

CS448/548 Sequence 16

RAID

◆ RAID level 1: Mirrored Disks
– Most expensive option
– Tandem doubles controllers too
– Write to both disks
– Read from one disk
– Characteristics:

» S = slowdown. In synchronous disks spindles are synchronized so
that the corresponding sectors of a group of disks can be accessed
simultaneously. For synchr. disks S = 1.

» Reads = 2D/S, i.e. concurrent read possible
» Write = D/S, i.e. no overhead for concurrent write of same data
» R-Modify-Write = 4D/(3S)
» Pat88 Table II (pg. 112)

20

•

•

CS448/548 Sequence 16

RAID Pat88 Table II

21

•

•

CS448/548 Sequence 16

RAID

◆ RAID level 2: Hamming Code
– DRAM => problem with α-particles

» Solution, e.g. parity for SED, Hamming code for SEC
– Recall Hamming Code
– Same idea using one disk drive per bit
– Smallest accessible unit per disk is one sector

» access G sectors, where G = # data disks in a group
– If operation on a portion of a group is needed:

1) read all data
2) modify desired position
3) write full group including check info

22

•

•

CS448/548 Sequence 16

Recall Hamming Code

m = data bits
k = parity bits

23

•

•

CS448/548 Sequence 16

Compute Check

24

•

•

CS448/548 Sequence 16

RAID

– Allows soft errors to be corrected “on the fly”.
– Useful for supercomputers, not useful for transaction

processing
 e.g. used in Thinking Machine (Connection Machine)

“Data Vault” with G = 32, C = 8.
– Characteristics:

» Pat88 Table III (pg 112)

25

•

•

CS448/548 Sequence 16

RAID Pat88 Table III

26

•

•

CS448/548 Sequence 16

RAID

◆ RAID level 3: Single Check Disk per Group
– Parity is SED not SEC!
– However, often controller can detect if a disk has

failed
» information of failed disk can be reconstructed
» extra redundancy on disk, i.e. extra info on sectors etc.

– If check disk fails
» read data disks to restore replacement

– If data disk fails
» compute parity and compare with check disk
» if parity bits are equal => data bit = 0
» otherwise => data bit = 1

27

•

•

CS448/548 Sequence 16

RAID

– Since less overhead, i.e. one check disk only

 => Effective performance increases
– Reduction in disks over L2 decreases maintenance
– Performance same as L2, however, effective

performance per disk increases due to smaller number
of check disks

– Better for supercomputers, not good for transaction
proc.

– Maxtor, Micropolis introduced first RAID-3 in 1988
– Characteristics:

» Pat88 Table IV (pg 113)

28

•

•

CS448/548 Sequence 16

RAID Pat88 Table IV (pg 113)

29

•

•

CS448/548 Sequence 16

RAID
◆ RAID level 4:

Independent Reads/Writes
– Pat88 fig 3 pg. 113

compares data locations

30

•

•

CS448/548 Sequence 16

RAID

◆ RAID level 4: Independent Reads/Writes
– Disk interleaving has advantages and disadvantages
– Advantage of previous levels:

» large transfer bandwidth
– Disadvantages of previous levels:

» all disks in a group are accessed on each operation (R,W)
» spindle synchronization

■ if none => probably close to worse case average seek
times, access times (tracking + rotation)

– Interleave data on disks at sector level
– Uses one parity disk

31

•

•

CS448/548 Sequence 16

RAID
– for small accesses

» need only access to 2 disks, i.e. 1 data & parity
» new parity can be computed from old parity + old/new data
» compute: Pnew = dataold XOR datanew XOR Pold

– e.g. small write
1) read old data + parity
2) write new data + parity

– Bottleneck is parity disk
– e.g. small read

» only read one drive (data)
– Characteristics:

» Pat88 Table V (pg 114)

in parallel•

32

•

•

CS448/548 Sequence 16

RAID
Pat88 Table

V (pg 114)

33

•

•

CS448/548 Sequence 16

RAID

◆ RAID level 5: No Single Check Disk
– Distributes data and check info across all disks, i.e.

there are no dedicated check disks.
– Supports multiple individual writes per group
– Best of 2 worlds

» small Read-Modify-Write
» large transfer performance
» 1 more disk in group => increases read performance

– Characteristics:
» Pat88 Table VI (pg 114)

34

•

•

CS448/548 Sequence 16

RAID
◆ Pat88

Table VI
(pg 114)

35

•

•

CS448/548 Sequence 16

RAID

◆ Patterson Paper
– discusses all levels on pure hardware problem
– refers to software solutions and alternatives, e.g. disk

buffering
– with transfer buffer the size of a track, spindle

synchronization of groups not necessary
– improving MTTR by using spares
– low power consumption allows use of UPS
– relative performance shown in Pat88 fig. 5 pg. 115

36

•

•

CS448/548 Sequence 16

RAID
◆ relative performance

shown in Pat88 fig. 5
pg. 115

37

•

•

CS448/548 Sequence 16

RAID
◆ Summary

– Data Striping for improved performance
» distributes data transparently over multiple disks to make them

appear as a single fast, large disk
» improves aggregate I/O performance by allowing multiple I/Os to

be serviced in parallel
■ independent requests can be serviced in parallel by separate disks
■ single multiple-block block requests can be serviced by multiple

disks acting in coordination
– Redundancy for improved reliability

» large number of disks lowers overall reliability of disk array
» thus redundancy is necessary to tolerate disk failures and allow

continuous operation without data loss

38

•

•

CS448/548 Sequence 16

RAID
String
management

39

October 29, 1993 31

3.5.4 Orthogonal RAID

To this point in the paper, we have ignored the issue of how to connect disks to the host com-

puter. In fact, how one does this can drastically affect performance and reliability. Most computers

connect multiple disks via some smaller number of strings. A string failure thus causes multiple,

simultaneous disk failures. If not properly designed, these multiple failures can cause loss of data.

For example, consider the 16-disk array in Figure 7 and two options of how to organize mul-

tiple error-correction groups. Option 1 combines each string of four disks into a single error-cor-

rection group. Option 2 combines one disk on each string into a single error-correction group.

String
Controller

string

String
Controller

string

String
Controller

string

String
Controller

string

Option 1

Option 2

Figure 7: Orthogonal RAID. This figure present two options of how to organize error-
correction groups in the presence of shared resources, such as a string controller. Option 1 groups
four disks on the same string into an error-correction group; Option 2 groups one disk from each
string into a group. Option 2 is preferred over Option 1 because the failure of a string controller
will only render one disk from each error inaccessible.

Source:

RAID: high-performance,
reliable secondary storage,
Peter M. Chen, Edward K.
Lee, Garth A. Gibson, Randy
H. Katz, David A. Patterson,
Journal ACM Computing
Surveys (CSUR), Volume 26
Issue 2, June 1994,
Pages 145 - 185

•

•

CS448/548 Sequence 16

RAID
◆ Just to give you an idea about issues in

commercial system

◆ These are old examples and serve only to give a
historic perspective of key issues

40

•

•

CS448/548 Sequence 16

RAID
◆ Case Studies

– very early
– Thinking Machines Corp.: TMC ScaleArray

» RAID level 3 for CM-5 massively parallel processor
(MPP)

» high bandwidth for large files
» OS provides file system that can deliver data from a

single file to multiple processors from multiple disks
» uses 4 SCSI-2 strings with 2 disks each (= 8 disks)
» these 4 strings are attached to an 8MB disk buffer
» 3 of these units are attached to the backbone (=> 3x8=24

disks)

41

•

•

CS448/548 Sequence 16

RAID
◆ Case Studies

– HP: TickerTAIP/DataMesh
» material shown is from “The TickerTAIP Parallel RAID Architecture”,

Cao et.al., ACM Trans. on Computer Systems, Vol.12, No.3, August
1994, pp.236-269.

» traditional RAID architecture
■ host interface

– bottleneck
– single point of failure

42

1

1 Introduction
A disk array is a structure that connects several small disks together to extend the cost, power and
space advantages of small disks to high capacity configurations. By providing partial redundancy
such as parity, availability can be increased as well. Such RAID arrays (for Redundant Arrays of
Inexpensive Disks) were first described in the early 1980s [Lawlor81, Park86], and popularized by
the work of a group at UC Berkeley [Patterson88, Patterson89].

The traditional architecture of a RAID array, shown in Figure 1, has a central controller, one or more
disks, and multiple head-of-string disk interfaces. The RAID controller interfaces to the host,
processes read and write requests, and carries out parity calculations, block placement, and data
recovery after a disk failure.

The RAID controller is crucial to the performance and availability of the system. If its bandwidth,
processing power, or capacity are inadequate, the performance of the array as a whole will suffer.
(This is increasingly likely to happen: parity calculation is memory-bound, and memory speeds
have not kept pace with recent CPU performance improvements [Ousterhout90].) Latency
through the controller can reduce the performance of small requests. The single point of failure
that the controller represents can also be a concern: published failure rates for disk drives and
packaged electronics are now similar. Although some commercial products include spare RAID
controllers, they are not normally simultaneously active: one typically acts as a backup for the
other, and is held in reserve until it is needed because of failure of the primary. This is expensive:
the backup has to have all the capacity of the primary controller.

To address these concerns, we have developed the TickerTAIP1 architecture for parallel RAID
arrays (Figure 2). There is no central controller in a TickerTAIP disk array: it has been replaced by
a cooperating set of array controller nodes that together provide all the functions needed. The
TickerTAIP architecture offers fault-tolerance (no central controller to break), performance
scalability (no central bottleneck), smooth incremental growth (add another node), and flexibility
(mix and match components).

This paper provides an evaluation of the TickerTAIP architecture.

1. Because tickerTAIP is used in all the best pa(rallel)RAIDs!

Figure 1: traditional RAID array architecture.

host interconnect

disksdisk controllercentral RAID
controller

•

•

CS448/548 Sequence 16

RAID
◆ Case Studies cont.

– TickerTAIP/DataMesh Issues
» getting away from centralized architecture
» different algorithms for computing RAID parity
» techniques for establishing request atomicity,

sequencing, and recovery
» disk-level request-scheduling algorithms inside the

array

43

•

•

CS448/548 Sequence 16

RAID
◆ Case Studies

– HP: TickerTAIP/DataMesh
» TickerTAIP array architecture

TickerTAIP system environment

44

2

1.1 Related work
Many papers have been published on RAID reliability, performance, and on design variations for
parity placement and recovery schemes, such as [Clark88a, Gibson88, Menon89, Schulze89,
Dunphy90, Gray90, Lee90, Muntz90, Holland92]. Our work builds on these studies: we
concentrate here on the architectural issues of parallelizing the techniques used in a centralized
RAID array, so we take such work as a given.
Something similar to the TickerTAIP physical architecture has been realized in the HP7937 family
of disks [HPdisks89]. Here, the disks can be connected together by a 10MB/s bus, which allows
access to “remote” disks as well as fast switch-over between attached hosts in the event of system
failure. No multi-disk functions (such as a disk array) are provided, however.
A proposal was made to connect networks of processors to form a widely-distributed RAID
controller in [Stonebraker89]. This approach was called RADD—Redundant Arrays of Distributed
Disks. It proposed using disks spread across a wide-area network to improve availability in the
face of a site failure. In contrast to the RADD study, we emphasize the use of parallelism inside a
single RAID server; we assume the kind of fast, reliable interconnect that is easily constructed
inside a single server cabinet; we closely couple processors and disks, so that a node failure is
treated as (one or more) disk failures; and we provide much improved performance analyses
([Stonebraker89] used “all disk operations take 30ms”). The result is a new, detailed
characterization of the parallel RAID design approach in a significantly different environment.

1.2 Paper outline
We begin this paper by describing the TickerTAIP architecture, including descriptions and
evaluations of algorithms for parity calculation, recovery from controller failure, and extensions
to provide sequencing of concurrent requests from multiple hosts.
To evaluate TickerTAIP we constructed a working prototype as existence proof and functional
testbed, and then a detailed event-based simulation that we calibrated against the prototype.
These tools are presented as background material for the performance analysis of TickerTAIP that
follows, with particular emphasis on comparing it against a centralized RAID implementation.
We conclude the paper with a summary of our results.

Figure 2: TickerTAIP array architecture.

host
interconnect(s)

array controller nodes

small-area network

3

2 The TickerTAIP architecture
A TickerTAIP array is composed of a number of worker nodes, which are nodes with one or more
local disks connected through a SCSI bus. The nodes are connected to one another by a high-
performance small-area network with sufficient redundancy to tolerate single failures. (Mesh-
based switching fabrics can achieve this with reasonable cost and complexity. A design that would
meet the performance, scalability and fault-tolerance needs of a TickerTAIP array is described in
[Wilkes91].)

Figure 3 shows the environment in which we envision a TickerTAIP array operating. The array
provides disk services to one or more host computers. These connect to the array at originator
nodes. There may be several originator nodes, each connected to a different host; alternatively, a
single host can be connected to multiple originators for higher performance and greater failure
resilience. For simplicity, we require that all data for a request be returned to the host along the
path used to issue the request.

Figure 2 shows all nodes being both workers and originators: they have both host and disk
connections. A second design, shown in Figure 4, dedicates separate kinds of node to the worker
and originator functions. This makes it easy to support a TickerTAIP array that has multiple
different kinds of host interface. Also, since each node is plug-compatible from the point of view
of the internal interconnect, it is easy to configure an array with any desired ratio of worker and
originator nodes. This is a flexibility less easily achieved in the traditional centralized architecture.

In the context of this model, a traditional RAID array looks like a TickerTAIP array with several
unintelligent worker nodes and a single originator node on which all the parity calculations take
place.

3 Design issues
This section describes the TickerTAIP design issues in greater detail. It begins with an examination
of normal mode operation and then examines the support needed to cope with failures.

TickerTAIP
array

client processes

host’s I/O interface

Hosts

Figure 3: TickerTAIP system environment.

•

•

CS448/548 Sequence 16

RAID
◆ Case Studies

– HP: AutoRAID
» provide a RAID that will provide excellent performance and

storage efficiency in the presence of dynamically changing
workloads

» provides both level 1 and level 5 RAID
» dynamically shift data to the “appropriate” level
» dynamically shift data to level 5 if approaching maximum array

capacity
» parity logging
» hot pluggable disks, spare controller, dynamically adapts to added

capacity
» Wilkes, J. et. al. “The HP AutoRAID hierarchical storage

system”, ACM Trans. on Computer systems, 14, 1 (Feb.),
108-136, 1996.

45

•

•

CS448/548 Sequence 16

RAID
◆ Case Studies

– StorageTek: Iceberg 9200 Disk Array Subsystem
» using 5.25-inch disks to look like traditional IBM

mainframe disks
» implements an extended RAID level 5 and level 6 disk

array
» array consists of 13 data drives, P and Q drives, and a hot

spare
» data, parity and Reed-Solomon coding are striped across

the 15 active drives

46

