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Challenges

The Engineering Challenge

The Security Challenge

The Real-time Challenge

The Survivability Challenge (includes all “illities”)

Apply the newest technology to a survivability 
architecture

Design Methodology based on Design for Survivability

Integrating Clarus data into RT-App.
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Project Architecture
A system operating in an unbounded environment

Inheriting all problems from such environment
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The big picture
The problem:
Should we connect the control network to the Internet?
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faults and attacks; “the mission must survive” [4]. Quantitative
definitions imply that survivability can be quantified, e.g.,
measured, and assume a formal model. For a closer look at
survivability, its definitions and implications, the interested
reader is referred to [8]. The work presented here incorporates
both qualitative and quantitative aspects of survivability.

There are many definitions that address the dependability
and resilience of a control system in one from or another.
Some are mathematically very precise, such as reliability R(t),
which is defined to be the probability that the system performs
to its specification during the entire interval [0, t] assuming that
it was functioning at t = 0. The definitions of survivability,
resilience, or intrusion tolerance are less precise and have been
subject of much discussion in the dependability and security
community. From our application point of view we care less
about the specific definitions as about the general implications.
Thus we focus on the overall concept of being able to
deal with benign or maliciously induced faults by adapting
the system in a manner that 1) provides continues essential
functionalities, 2) adapts to unexpected changes of system
input or external events, 3) provids graceful degradation, and
4) satisfies security and safety requirements under diverse fault
assumptions. What is meant by “diverse fault assumptions”
needs further explanation.

The core of addressing survivability is the capability of
dealing with diverse faults. There are too many fault sources
to list them individually and exhaustively. Therefore the notion
of fault models is used, capturing the behavior of a fault, i.e.,
a fault can produce an error that in turn can lead to a failure.
The latter implies that the system does not perform its tasks
to specifications anymore.

The diversity of faults and their consequences for a system
have been the primary motivation for the definition of fault
models. A fault model addresses the behavior of the faults
and specifies the redundancy levels required to tolerate a single
fault type or a mix of fault types. Many different fault models
have been proposed over the years ranging from the simple
models that make no assumptions about the fault behavior [9],
to hybrid fault models considering multiple fault behavior. The
latter considers a mix of faults ranging from benign, symmetric
to asymmetric faults [13], with potential transmissive and
omissive behaviors [1]. The five-fault model of [1] constitutes
the basis for the faults addressed in the described system.
Omission faults will be emphasized, because communication
may be interrupted. Furthermore, value faults (symmetric and
asymmetric) such as infeasible or incorrect input or output
data were also deemed important, since any of those faults
has the potential to decrease safety.

A. Contributions

The contributions of this paper are of theoretical and
practical nature. The main theoretical contribution is the
combination of the approaches introduced in [6], [5], [12]
into one comprehensive architecture with survivability and
resilience characteristics. Furthermore, the subsystem that
monitors the application program is extended to three mon-
itoring approaches: 1) detection of dependency violations, 2)

identification of anomalies through exception triggers and data
sensor analysis, and 3) detection of off-nominal, non-certified
executions. The theory of the latter is extended to allow for
certification of executions based on Behavior Sets.

The practical significance is in the description of the actual
system with extensive evidence to the resilience of the archi-
tecture based on observation of the system in action and data
collection by the system during the year 2012.

II. REAL-TIME CONTROL APPLICATION

The traffic control infrastructure is augmented with capabil-
ities driven by performance and safety improvement goals.

A. Control System Components and Operation

The real-time weather responsive system is shown in Fig-
ure 1. The non-shaded components are the existing ITS system
whereas the shaded components are additions and are the
components that implement real-time weather response and
system resilience. The traffic lights in an intersection are
controlled by a traffic controller hosted in a cabinet located in
the intersection. The traffic controller is connected to a switch,
or hub, to the ITS control network, which is either physically
totally separated or connected to the Internet via a Firewall. It
should be noted that the separation of the ITS control network
and the Internet is critical and any access through the firewall
has to be extremely limited and under strict compliance with
security policies.

Embedded Rabbit System 
Switch 

Traffic Controller

Operation Monitoring
Contingency Management

Inter
net

Clarus 
Server

Local Clarus 
Server

FirewallTraffic Light

Fig. 1. Overview of the real-time weather response system

Weather data is collected by the Clarus system from a
network of Environmental Sensor Stations (ESS) of partic-
ipating states. The network of ESS can be viewed at [2]
by the general public. This ESS data is accessible via the
Internet from the Clarus server, after it undergoes quality and
consistency checks based on Clarus quality checking algorithm
[3]. Due to this quality check, survivability considerations
do not include verification of the original Clarus data. An
embedded Rabbit-based system located in the traffic signal
system in the intersection retrieves the Clarus system data
from the Clarus server or a local mirror site, analyses the
relevant data, and computes changes to the signal timing.
Upon approval, the signal timing changes are made in the
Traffic Controllers by the embedded Rabbit system. Signal
timing plan adaptations include changes such as modified all-
red or yellow clearance intervals or traffic signal efficiency
parameters such as minimum green, maximum green, passage
time as well as different coordination parameters. Suggested
changes depend on multiple factors such as approach speed,



Clarus...
Utilizing local sensor data to do what?
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Clarus Subscription Data
Access Clarus data files from the web
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Highly Critical (Essential) Clarus Data  
essPrecipSituation  Describes the weather situation in terms of 

precipitation, integer values indicate situation 

essPrecipYesNo  Indicates whether or not moisture is detected 
by the sensor: (1) precip; (2) noPrecip; (3) error 

essPrecipRate The rainfall, or water equivalent of snow, rate 

essRoadwaySnowpackDepth  The current depth of packed snow on the 
roadway surface 

essAirTemperature  The dry-bulb temperature; instantaneous  

essVisibilitySituation  integer value, describes the travel environment 
in terms of visibility 

essVisibility  Surface visibility (distance) 
essSurfaceStatus  integer value, a value indicating the pavement 

surface status 

Prototype
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What could possibly go wrong? 
What assumptions should one 
place on a system?

Anything is possible!

and it will happen!

Malicious act will occur sooner or 
later

It is hard or impossible to predict 
the behavior of an attack
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Unique Opportunity
What is unique about this project?

The application domain is part of a Critical Infrastructure

The project is just small enough to demonstrate a 
survivability architecture

The code is relatively small

The execution is relatively deterministic

The run-time support is relatively mature
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What is Survivability
Closely related Terms

Intrusion Tolerance

Resilience

Relationship to

Fault-tolerance

Security
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Design for Survivability
When Systems become too complex

Design by Integration of Survivability 
mechanisms

Build-in not add-on

Design for Survivability has surfaced in 
different contexts
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pavement surface conditions, visibility, and the mode of signal
operations.

The embedded Rabbit System shown in Figure 1 is based
on a Rabbit RCM4300 microcontroller running Dynamic C1

version 10.7 supporting a variety of services including AES
and SSL. It is the core hardware in the system that communi-
cates with the traffic controller through the ethernet switch. To
facilitate communications, the controller and microprocessor
must follow the National Transportation Communications for
ITS Protocol (NTCIP) communication standard (AASHTO
2005), a family of standards for transmitting data and messages
between different devices used in Intelligent Transportation
Systems (ITS). The Dynamic Object STMP/UDP/IP Ethernet
protocol stack is used to facilitate the NTCIP-based communi-
cation between the microprocessor and the traffic controller. A
computer, connected to the microprocessor through the cabinet
serial connection, is used to setup and add the control logic
to the microprocessor. Because the microprocessor is directly
connected to the traffic controller through the Ethernet port
of the switch, the connection is not sensitive to the cabinet
configuration.

B. The Clarus System Weather Data Support

The data that is needed to implement real-time weather
responsiveness comes from sensors of the ESS. The Clarus
System shown in Figure 1 maintains the location of all
ESS. The ESS most suitable for the specific traffic signal
system, e.g., the one with closest proximity to the intersection,
needs to be identified and a subscription for that ESS is
generated. The subscription, which may include data from
a single or multiple specified ESSs, is made available via
the Clarus System’s Subscription web site in the format of
a comma separated value (CSV) file. It should be noted that
the data is not queried from a data base server, but simply
accessed directly over the web and is, unless protected from
general access by a password, publicly readable. Specifically,
a list of observations, i.e., the actual CSV files, is made
available in regular intervals typically ranging from 5 to
15 minutes. The specific observations in the list depend on
the capabilities associated with the ESS associated with the
subscription. Within a subscription the observation files follow
the file naming convention date time.csv. An observation file
contains data for specific Observation Type IDs (ObsTypeID).
The first line is a header line describing the values present in
each line of data. A relevant subset of these values is used
later by the system to calculate changes to be made to the
traffic controller. Since a subscription is not limited to contain
data from only one ESS but can be specified to contain data
from multiple sensors, e.g., to include neighboring ESS, the
control algorithms of the weather responsive system can take
advantage of data fusion, thus taking advantage of a “larger
view”.

1Dynamic C and Rabbit are registered trademarks of Digi International Inc.
See documentation at www.rabbit.com

C. Software System Architecture
An overview of the software system that controls the

weather responsive system is shown in Figure 2, where shaded
areas refer to external hardware interfaces. The Rabbit system,

Network
Interface

Clarus Data Conversion
Interface

Algorithm
Engine

Traffic 
Controller

Clarus Data 
Management

Operation Monitoring and 
Contingency Management System

Operation Software System

Fig. 2. Overview of the software system architecture

which we will refer to simply as “Rabbit”, executes the
application control software, which consists of the Operational
Software System and an Operation Monitoring and Contin-
gency Management System. The operation software system
connects to either a Local Clarus Server (LCS), which is
simply a local mirror supplying the Clarus subscription data, or
the Clarus System, using the Network Interface to the Internet.
In regular intervals that are specified by the Clarus subscription
the Clarus data is read and converted by the Rabbit, the desired
sensor data is extracted, and specific algorithms compute
changes to the control parameters of interest, e.g., yellow
timing adjustments. The traffic controller is then updated. All
this is monitored at run-time via the instrumentation telemetry
by the Operation Monitoring and Contingency Management
System. That is, the Rabbit monitors the execution of its
software in real-time by sensor points that are injected into
the software.

III. FORMAL MODEL OF SYSTEMS ARCHITECTURE

The system architecture is guided by the design methodol-
ogy and general principles shown in [6], [10]. It starts with
the view of a general system as two distinct abstract machines
that define the implementation in the development of any
software system. The first, called Operational Machine is the
machine that interfaces directly with the hardware interface.
It executes a set of operations O, e.g., “Get Data” or “Update
Controller”, with cardinality |O|. As the embedded system
provides services to the hardware, the services cause the
operational machine to perform a series of actions referred to
as operations. Each operation causes the operational machine
to perform a specific action. The transition from one operation
to another marks an operational epoch. Thus, the purpose
of this operational machine is to articulate exactly what the
software system must do to provide the necessary services
dictated by the software system requirements.

The second abstract machine, called Functional Machine, is
a set of functionalities that describe exactly how each system

Design Methodology
Measurement-based design and operation
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Our view of a System
Different “machines”

Operations

Functions

Modules

Epoch

defined by transitions
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Formal Model of Sys. Arch.
Measurement-based design and operation
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operation is implemented. Each operation oi in O uses one
or more functionalities fj from a set F of functionalities with
cardinality |F |. Similar to the operational epoch the functional
epoch is defined by transitions from one functionality to
another. Functionalities are implemented by code modules,
which in our case are written in Dynamic C, a C-like language
with a unique multitasking environment as will be described
later. The implementation of the functionalities in code results
in a set of code modules M of cardinality |M |.

As the system operates, operations cause functionalities,
implemented by modules, to be invoked, or functionalities
cause operations to be performed. During system operation,
i.e., while the application is running, the operational and
functional machines can be monitored in realtime, assuming
appropriate instrumentation is in place to allow this. In our
case, the execution of the application running on the Rabbit is
monitored in real-time by three different monitoring mecha-
nisms as shown in Figure 3. The first mechanism, described by

Profiling
Model

SW Sensor
Model

Dependency
Model

Contingency Management System

Operation Monitoring

Certified 
Operational &

Module 
Executions

Intra-machine
Inter-machine 

Model

Exception 
Triggers &

Data Sensors

Fig. 3. Using Profiling, Dependencies, and Data Sensor Monitoring

a Profiling Model, is based on analysis of realtime execution
profiles. It will be used to describe measurement of typical
behavior as the basis for what to expect, with a certain
probability of error, in the future. The second mechanism,
covered by a Dependency Model, is monitoring for violations
of state dependencies between the machines and within the
machines. Any violation indicates an abnormal execution. The
third mechanism, referred to as the Software Sensor Model,
is based on the analysis of data supplied by specific data
sensors within the software. These software sensors supply
information that can be used for analysis or direct actions.
All three mechanisms allow for the detection of off-nominal,
unexpected, or invalid executions, which in turn are used by
the Contingency Management System. We now describe each
of the three models in detail.

A. Profiling-based Model
If one counts the invocations of operations, functionalities

and modules over a specific period of time one can derive the
respective operational, functional and module profile. These
profiles will be used later in the analysis that may expose off-
nominal executions.

To stay compatible with the notation used in [5], [10]
we will use letters u, q and p for operational, functional
and module profiles respectively. The notation is introduced

using module profiling as an example. Let pi denote the
probability that the system is executing module mi. Then
p = (p1, p2, ..., p|M |) is the module profile of the system,
i.e., it is the probability vector of the modules in M .

B. Non-synchronized Profiling
During execution of the system we are interested in observ-

ing the module profile over n epochs. Here we assume that n
is not synchronized to a particular higher level machine, e.g.,
the operational machine’s epoch.

This observed profile is denoted by p̂ = (p̂1, p̂2, ..., p̂|M |),
where p̂i = ci/n is the fraction of system activity due to
invocations of module mi and ci is the count of invocations
of mi. As the software executes, invocations of modules are
continuously monitored and module profiles are generated and
analyzed. We want to keep track of these profiles. Let p̂k

denote the kth module profile. Thus p̂k is the kth observed
module profile, observed over n epochs, which was preceded
by p̂k�1, observed over the previous n epochs, and so forth.

To get a feel for the expected evolving profile of the system,
we want to establish the module profile equivalent of an “h-
day moving average” in financial stock movements, i.e., we
will derive a centroid that will serve as a reference for observed
profiles. For that, just as in [10], we consider h sequences of
n epochs each and define a centroid p = (p1, p2, ..., p|M |),
where

pi =
1
h

hX

j=1

p̂j
i (1)

Thus p is a |M |-dimensional vector, and using the above
financial metaphor, each element represents the “h-day moving
average” of a specific stock (module), where a day is measured
as n epochs. Furthermore, just as in the stock market, we don’t
know what the future brings but find it useful to track the past
in order to establish “nominal”, i.e., expected, behavior.

C. Synchronized Profiling
In the previous discussion the profiles reflect the behavior

of the system. However, it is a single behavior. If there are
multiple behaviors that a machine may exhibit, then one has
to consider sets of behaviors, which we refer to as Behavior
Sets. Let’s consider the case where modules may exhibit
different behavior during an operational epoch. Therefore,
assume we synchronize module epochs to the operational
machine, specifically an operational epoch. Thus we make the
assumption that n is the number of module epochs expiring
during one operational epoch. In our application n is the
number of module epochs during the 15 minute operation
epoch at which the Clarus data is fetched. We now adapt the
notation of the non-synchronized case and will switch from
lower to upper case letters when considering behavior sets.

Now the observed profile is P̂ = (P̂1, P̂2, ..., P̂|M|), where
P̂i is the behavior set of module mi, i.e., it is a set of different
profiles p̂i = ci/n, which again represents the fraction of
system activity due to invocations of module mi and ci is
the count of invocations of mi during the operational epoch
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does not say anything about dependencies!

18



Profiles
Module Profile 

p = <p1, p2, ...,p|M| >  

   where pi is probability that mi is executing
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Profiles
Observed Profile
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O MF

Fig. 4. Dependencies between operations, functionalities, and modules

GO = (O,�O)

GF = (F,�F )

GM = (M,�M )

defines a precedence relation on the operations in O, i.e.,
if oj depends on oi then (oi, oj) is in �O. Any violation
of the precedence indicates a problem in the control flow
of operations of the program. We define similar graphs for
functionalities and modules.

GF = (F,�F )
GM = (M,�M )

are the graphs defining calling relationships between func-
tionalities and modules respectively. It should be noted
that GM is the static call graph of modules in M created
by the compiler. The operational, functional, and module
dependency graphs are used to detect invalid or previously
unobserved transitions.

B. Profiles and Profiling

Leaning on the notation of [8] we will use letters u,
q and p for operational, functional and module profiles
respectively. The notation is introduced using module
profiling as an example. Let pl denote the probability that
the system is executing module ml.

p = (p1, p2, ..., p|M |) is the module profile of the system,
i.e., it is the probability vector of the modules in M .

During execution of the system we are interested in
observing the module profile over n epochs. This observed
profile is

p̂ = (p̂1, p̂2, ..., p̂|M |), where p̂i = ci/n is the fraction of
system activity due to invocations of module mi and ci is
the count of invocations of mi.

As the software executes, invocations of modules are
continuously monitored and module profiles are generated
and analyzed. We want to keep track of these profiles. Let

p̂k denotes the kth observed module profile, observed over
n epochs

which was preceded by p̂k�1, observed over the previous
n epochs, and so forth.

To get a feel for the expected evolving profile of the
system, we want to establish the module profile equivalent
of an “h-day moving average” in financial stock movements,
i.e., we will derive a centroid that will serve as a reference
for observed profiles. For that, just as in [8], we consider
h sequences of n epochs each and define a centroid p =
(p1, p2, ..., p|M |), where

pi =
1
h

hX

j=1

p̂j
i (1)

Thus p is a |M |-dimensional vector, and using the above
financial metaphor, each element represents the “h-day mov-
ing average” of a specific stock (module), where a day is
measured as n epochs. Furthermore, just as in the stock
market, we don’t know what the future brings but find it
useful to track the past in order to establish “nominal”, i.e.,
expected, behavior.

One can compute the distance of an observed profile p̂k

from centroid p to get a distance scalar dk

dk =
nX

i=1

(pi � p̂k
i )2 (2)

Given the computational realities of the Rabbit, we actually
use dk =

Pn
i=1 |(pi�p̂k

i )|, rather than the square. The goal is
to analyze the effectiveness of using the distance of observed
profiles from the centroid to detect off-nominal executions.

C. Run-time Model

One of the challenges in monitoring a system is dealing
with the effects of nondeterminism of the executions. Typical
sources of nondeterminism are interrupts, or even more
importantly, context switching in multiprocessing based on
time slicing. The Rabbit system uses a single processor in
which multitasking is not achieved using time slicing; rather
it is implemented using a model defined by costatements.
A costatement is defined as a task in a nonpreemptive mul-
titasking model. In practice, the main program of a control
applications runs costatements (the tasks) in an endless loop,
cycling from one costatement to the next. Each costatement
has a statement counter, i.e., a program counter, which
indicates which instruction of the costatement will execute
when it gets a chance to run. Execution is switched from one
costatement (of the infinite loop) to the next in a round-robin
fashion when the currently executing costatement “yields” to
the next costatement using explicit commands such as yield,
abort or waitfor(event). Note that these yielding mechanisms
represent a model that is based on good behavior. The state
of a costatement is called a costate. We will use the terms
costatement and costate interchangeably.

An execution model in which there are no externally
initiated task switches executes with a low level of non-
deterministism, i.e., a task switch is explicitly demanded
by the currently executing task: the active costatement. On
the other hand this means however that it is possible for a
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measured as n epochs. Furthermore, just as in the stock
market, we don’t know what the future brings but find it
useful to track the past in order to establish “nominal”, i.e.,
expected, behavior.

One can compute the distance of an observed profile p̂k

from centroid p to get a distance scalar dk

dk =
nX

i=1

(pi � p̂k
i )2 (2)

Given the computational realities of the Rabbit, we actually
use dk =

Pn
i=1 |(pi�p̂k

i )|, rather than the square. The goal is
to analyze the effectiveness of using the distance of observed
profiles from the centroid to detect off-nominal executions.

C. Run-time Model

One of the challenges in monitoring a system is dealing
with the effects of nondeterminism of the executions. Typical
sources of nondeterminism are interrupts, or even more
importantly, context switching in multiprocessing based on
time slicing. The Rabbit system uses a single processor in
which multitasking is not achieved using time slicing; rather
it is implemented using a model defined by costatements.
A costatement is defined as a task in a nonpreemptive mul-
titasking model. In practice, the main program of a control
applications runs costatements (the tasks) in an endless loop,
cycling from one costatement to the next. Each costatement
has a statement counter, i.e., a program counter, which
indicates which instruction of the costatement will execute
when it gets a chance to run. Execution is switched from one
costatement (of the infinite loop) to the next in a round-robin
fashion when the currently executing costatement “yields” to
the next costatement using explicit commands such as yield,
abort or waitfor(event). Note that these yielding mechanisms
represent a model that is based on good behavior. The state
of a costatement is called a costate. We will use the terms
costatement and costate interchangeably.
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E. Experimental Results

A prototype has been built based on a Rabbit 5700 running
Dynamic C version 10.5.4, which has been instrumented to
allow operation, function and module profiling. Initially all
Dynamic C modules were instrumented, including library
modules. However, not having the Dynamic C library source
code we did not instrument the library assembler routines.
That in itself would have been fine, had it not been for the
fact that some of the non-instrumented assembler routines
called C modules, thereby breaking out precedence viola-
tion detection capability. We therefore had to eliminate the
instrumentation to those modules. A total of 71 modules
furnished the data for the observed profiles, the centroid
and the dual-bound threshold vectors. For the figures shown
below a subset of only 56 relevant modules was used.

Fig. 5 shows an actual observed profile which encapsulates
the data transmission from the Clarus systems. The x-axis
indicates the module ID and the y-axis shows the frequencies
in logarithmic scale. The figure depicts profile p̂k[↵] for four
costates: 1) System Configuration, 2) Application Control, 3)
Monitoring and 4) Utilities. As expected, costate 2 with its
application control dominates the spectrum, i.e., p̂k[2]. The
magnitude of the frequencies is of course highly dependent
on the size of the Clarus subscription.

An example of the average, minimum and maximum
frequencies are shown in Fig. 6. The average constitutes
centroid p̂k[↵], in this case p̂k[2] for costate 2. For this
specific Clarus subscription the certification space between
✏min[2] and ✏max[2] appears rather tight. However, the fre-

quency count is shown as log-scale. For example, if we look
at module m25, which is filter clarus data, the actual value
for the centroid p[↵] is p25[2] = 3873. The minimum and
maximum number of invocations, which we used for the
dual-bound threshold functions, were ✏min

25 [2] = 1564 and
✏max
25 [2] = 9665 respectively.

As indicated before, threshold vectors are generated by
observing the system in a learning mode over time, thereby
letting observed executions affect what is considered a
nominal execution. In our example, over the time of the
observations the specific values indicated arose. For m25 this
meant that as long as p̂k

25[2] was in the interval [1564, 9665]
the execution was considered nominal.

IV. CONCLUSIONS

A prototype of a real-time weather responsive system
has been described. This system can take real-time weather
data and modify traffic signal timing within safety standard.
The design of the system employs a state-of-the-art design
methodology that incorporates design for survivability. It
allows to monitor its executions to detect 1) violations of
dependencies of operations, functionalities, and modules, and
2) the detection of off-nominal observed execution profiles.
The latter is established by checking if the observed profiles
are within a dual-bound threshold space that defines nominal
profiles. Current efforts are to test the effectiveness of the
detection of off-nominal executions in preparation for field
tests.

Profile Vector & Scalar
Observe h sequences of n epochs
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Fig. 4. Dependencies between operations, functionalities, and modules

GO = (O,�O)

GF = (F,�F )

GM = (M,�M )

defines a precedence relation on the operations in O, i.e.,
if oj depends on oi then (oi, oj) is in �O. Any violation
of the precedence indicates a problem in the control flow
of operations of the program. We define similar graphs for
functionalities and modules.

GF = (F,�F )
GM = (M,�M )

are the graphs defining calling relationships between func-
tionalities and modules respectively. It should be noted
that GM is the static call graph of modules in M created
by the compiler. The operational, functional, and module
dependency graphs are used to detect invalid or previously
unobserved transitions.

B. Profiles and Profiling

Leaning on the notation of [8] we will use letters u,
q and p for operational, functional and module profiles
respectively. The notation is introduced using module
profiling as an example. Let pl denote the probability that
the system is executing module ml.

p = (p1, p2, ..., p|M |) is the module profile of the system,
i.e., it is the probability vector of the modules in M .

During execution of the system we are interested in
observing the module profile over n epochs. This observed
profile is

p̂ = (p̂1, p̂2, ..., p̂|M |)

where p̂i = ci/n is the fraction of system activity due to
invocations of module mi and ci is the count of invocations
of mi.

As the software executes, invocations of modules are
continuously monitored and module profiles are generated
and analyzed. We want to keep track of these profiles. Let

p̂k denotes the kth observed module profile, observed over
n epochs

which was preceded by p̂k�1, observed over the previous
n epochs, and so forth.

To get a feel for the expected evolving profile of the
system, we want to establish the module profile equivalent
of an “h-day moving average” in financial stock movements,
i.e., we will derive a centroid that will serve as a reference
for observed profiles. For that, just as in [8], we consider h
sequences of n epochs each

Define a centroid p = (p1, p2, ..., p|M |), where

pi =
1
h

hX

j=1

p̂j
i (1)

and the distance of p̂k from centroid p is given by

dk =
nX

i=1

(pi � p̂k
i )2 (2)

Given the computational realities of the Rabbit, we actually
use dk =

Pn
i=1 |(pi�p̂k

i )|, rather than the square. The goal is
to analyze the effectiveness of using the distance of observed
profiles from the centroid to detect off-nominal executions.

C. Run-time Model

One of the challenges in monitoring a system is dealing
with the effects of nondeterminism of the executions. Typical
sources of nondeterminism are interrupts, or even more
importantly, context switching in multiprocessing based on
time slicing. The Rabbit system uses a single processor in
which multitasking is not achieved using time slicing; rather
it is implemented using a model defined by costatements.
A costatement is defined as a task in a nonpreemptive mul-
titasking model. In practice, the main program of a control
applications runs costatements (the tasks) in an endless loop,
cycling from one costatement to the next. Each costatement
has a statement counter, i.e., a program counter, which
indicates which instruction of the costatement will execute
when it gets a chance to run. Execution is switched from one
costatement (of the infinite loop) to the next in a round-robin
fashion when the currently executing costatement “yields” to
the next costatement using explicit commands such as yield,
abort or waitfor(event). Note that these yielding mechanisms
represent a model that is based on good behavior. The state
of a costatement is called a costate. We will use the terms
costatement and costate interchangeably.

An execution model in which there are no externally
initiated task switches executes with a low level of non-
deterministism, i.e., a task switch is explicitly demanded
by the currently executing task: the active costatement. On
the other hand this means however that it is possible for a
costatement to cause starvation by not yielding. However,
a special mechanism called watchdog can be used to force
timer interrupts. In this case the system deviates from its
otherwise nonpreemptive execution model.
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5. MULTITASKING WITH DYNAMIC C
In a multitasking environment, more than one task (each representing a sequence of operations) can 
appear to execute in parallel. In reality, a single processor can only execute one instruction at a time. If an 
application has multiple tasks to perform, multitasking software can usually take advantage of natural 
delays in each task to increase the overall performance of the system. Each task can do some of its work 
while the other tasks are waiting for an event, or for something to do. In this way, the tasks execute almost 
in parallel.

There are two types of multitasking available for developing applications in Dynamic C: preemptive and 
cooperative. In a cooperative multitasking environment, each well-behaved task voluntarily gives up con-
trol when it is waiting, allowing other tasks to execute. Dynamic C has language extensions, costatements 
and cofunctions, to support cooperative multitasking. 

Preemptive multitasking is supported by the slice statement, which allows a computation to be divided into 
small slices of a few milliseconds each, and by the µC/OS-II real-time kernel.

5.1 Cooperative Multitasking
In the absence of a preemptive multitasking kernel or operating system, a programmer given a real-time 
programming problem that involves running separate tasks on different time scales will often come up 
with a solution that can be described as a big loop driving state machines. 

Figure 5.1  Big Loop 

Dynamic C, costates and yield                                            
(Figure from Dynamic C Users Manual)
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Figure 5.3 shows the execution thread through a costatement when a waitfor evaluates to true.

Figure 5.3  Execution thread when waitfor evaluates to true

yield

The yield statement makes an unconditional exit from a costatement or a cofunction. Execution contin-
ues at the statement following yield the next time the costatement or cofunction is encountered by the 
execution thread.

Figure 5.4  Execution thread with yield statement 



Dynamic C, costate and waitfor        (Figure from Dynamic C Users Manual)
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• init_on 

The costatement is initially active and will automatically execute the first time it is encountered in 
the execution thread. The costatement becomes inactive after it completes (or aborts). The costate-
ment can be made inactive by CoPause().

If state is absent, a named costatement is initialized in a paused init_on condition. This means that 
the costatement will not execute until CoBegin() or CoResume() is executed. It will then execute 
once and become inactive again.

Unnamed costatements are always_on. You cannot specify init_on without specifying a costatement 
name.

5.3.3  Control Statements
This section describes the control statements identified by the keywords: waitfor, yield and abort.

waitfor (expression); 

The keyword waitfor indicates a special waitfor statement and not a function call. Each time 
waitfor is executed, expression is evaluated. If true (non-zero), execution proceeds to the next state-
ment; otherwise a jump is made to the closing brace of the costatement or cofunction, with the statement 
pointer continuing to point to the waitfor statement. Any valid C function that returns a value can be 
used in a waitfor statement.

Figure 5.2 shows the execution thread through a costatement when a waitfor evaluates to false. The 
diagram on the left side shows which statements are executed the first time through the costatement. The 
diagram on the right shows that when the execution thread again reaches the costatement the only state-
ment executed is the waitfor. As long as the waitfor continues to evaluate to false, it will be the only 
statement executed within the costatement. 

Figure 5.2  Execution thread when waitfor evaluates to false 
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Figure 5.3 shows the execution thread through a costatement when a waitfor evaluates to true.

Figure 5.3  Execution thread when waitfor evaluates to true

yield

The yield statement makes an unconditional exit from a costatement or a cofunction. Execution contin-
ues at the statement following yield the next time the costatement or cofunction is encountered by the 
execution thread.

Figure 5.4  Execution thread with yield statement Profiles considering costates
.
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As operations, functionalities, and modules are called from
within exactly one costatement at a time, it is possible to
precisely determine the functionality and module that are
being executed on behalf of a specific operation. Thus, the
dispatching model results in executions with a low degree of
nondeterminism, which is very desirable when working with
profiles.

With the introduction of costates we can now extend
the definitions of profiles presented in Subsection III-B
to profile on a costate-basis. Thus, the observed profile
p̂ = (p̂1, p̂2, ..., p̂|M |), the kth module profile p̂k, the
centroid p = (p1, p2, ..., p|M |) and dk, i.e., the distance
from p̂k from centroid p, can now be defined on a costate-
basis.

Definitions based on costate ↵:

p̂[↵], p̂k[↵], p[↵] and dk[↵]

Now it is possible for each costate ↵ to have its own
profiling, which is not affected by any non-determinism due
to costate (task) switching, i.e., profiles of costates do not
interfere.

D. Run-time Monitoring and Certified Executions

Run-time monitoring refers to the process of monitoring
the system’s behavior in real-time. The goal is to determine
whether the system performs its specified tasks to specifi-
cations or if there are anomalies in the execution patterns.
The latter could indicate that the system is compromised.
“Has the software experienced a fault, or has the system
been attacked, or is it executing correctly in a fashion
that we just have not observed before?” These questions
have plagued the dependability and security communities for
decades. Fault detection and treatment have been researched
by the dependability and software engineering communities.
Attack recognition, i.e., intrusion detection, is a very complex
problem and detecting patterns or anomalies has been a
constant hot topic in the intrusion detection community, e.g.,
signature-based approaches or anomaly detection. Especially
in anomaly detection the critical issue is where one should
set the threshold for deciding what is normal and what is
not.

Our run-time monitoring employs two approaches:
1) Validation of Dependencies: Given the two types of

dependencies shown in Fig. 4 the system can detect
any violation of mappings from operations to func-
tionalities to modules in GOFM , and any violations of
precedence in each GO, GF and GM .

2) Detection of off-nominal executions: Here observed
profiles are checked to establish if they meet an
expected certified behavior, as will be described in
the rest of this subsection in the context of certifying
nominal profiles.

Detection of off-nominal executions is less precise of a sci-
ence than checking for precedence violations. Our approach
to the first does not attempt to mimic anomaly detection, but

it utilizes the detection of previously observed executions
patterns, e.g., profiles, versus those we have just not seen
before. Instead of focusing on “what is abnormal”, we focus
on “what is normal”. Thus everything outside of previously
identified, i.e., nominal, behavior is simply assumed off-
nominal. Nonimal behavior can be refined to a costate level.
Thus, given that different parts of the system execute in
different costates, e.g., the application control loop is in one
costate, the granularity of run-time monitoring is that of a
costate, and thus more accurate than that of a system lacking
that refinement.

The specifics of the instrumentation and how simple data
structures can be used to achieve costate-based profiling is
described in [4]. Using the data from the instrumentation,
i.e., the profiles, one can detect off-nominal executions.
However, rather than identifying off-nominal behavior, we
“certify” nominal executions. Here we describe a new dual-
bound approach to execution certification by extending the
certification of [4]. The result is a more stringent view of
nominal executions.

Certifying behavior per costate is now possible and will
again be described using module profiles, p̂k[↵]. The dis-
tance of the observed costate profiles p̂k[↵] from p[↵] can
be used so that departure beyond it indicates non-certified
behavior of costate ↵. Specifically, we define two threshold
vectors

✏max[↵] = (✏max
1 [↵], ..., ✏max

|M | [↵]) (3)

✏min[↵] = (✏min
1 [↵], ..., ✏min

|M | [↵]) (4)

where ✏max
i [↵] and ✏max

i [↵] are the upper and lower thresh-
old values of mi, representing a dual-bound threshold. Every
observed profile that is in the region between the two vectors
is assumed nominal. Thus we certify a profile p̂k[↵] to be a
nominal profile if

✏min[↵]  p̂k[↵]  ✏max[↵] (5)

i.e., if ✏min
i [↵]  p̂k

i [↵]  ✏max
i [↵] for every 1  i  |M |.

The values of threshold vectors ✏max[↵] and ✏min[↵] are
experimentally determined while the system is in test mode.
Test mode here assumes a controlled environment in which
the system runs normal and is closely observed while no fault
occurs and no attacks on the system take place. In practice
this means that, while in normal operation, the profiles are
tracked over time to derive (or calculate) the desired thresh-
old vectors. In the simplest case this could be the minimal
and maximal observed values of each p̂k

i [↵]. Alternatively,
one could introduce weight functions w, defined per costate,
to be multiplied with the threshold vectors. Then a nominal
profile would satisfy w✏min

i [↵]  p̂k[↵]  w0✏max
i [↵]. For

completeness sake it should be noted that the “threat vector”
of a system is of course unknown, but it appears realistic
to make the assumption that in a controlled environment no
unobserved faults or malicious act can sneak in.
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Profiles of costates are not polluted with activity from other 
costates

Result is lower degree of non-determinism of execution
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E. Experimental Results

A prototype has been built based on a Rabbit 5700 running
Dynamic C version 10.5.4, which has been instrumented to
allow operation, function and module profiling. Initially all
Dynamic C modules were instrumented, including library
modules. However, not having the Dynamic C library source
code we did not instrument the library assembler routines.
That in itself would have been fine, had it not been for the
fact that some of the non-instrumented assembler routines
called C modules, thereby breaking out precedence viola-
tion detection capability. We therefore had to eliminate the
instrumentation to those modules. A total of 71 modules
furnished the data for the observed profiles, the centroid
and the dual-bound threshold vectors. For the figures shown
below a subset of only 56 relevant modules was used.

Fig. 5 shows an actual observed profile which encapsulates
the data transmission from the Clarus systems. The x-axis
indicates the module ID and the y-axis shows the frequencies
in logarithmic scale. The figure depicts profile p̂k[↵] for four
costates: 1) System Configuration, 2) Application Control, 3)
Monitoring and 4) Utilities. As expected, costate 2 with its
application control dominates the spectrum, i.e., p̂k[2]. The
magnitude of the frequencies is of course highly dependent
on the size of the Clarus subscription.

An example of the average, minimum and maximum
frequencies are shown in Fig. 6. The average constitutes
centroid p̂k[↵], in this case p̂k[2] for costate 2. For this
specific Clarus subscription the certification space between
✏min[2] and ✏max[2] appears rather tight. However, the fre-

quency count is shown as log-scale. For example, if we look
at module m25, which is filter clarus data, the actual value
for the centroid p[↵] is p25[2] = 3873. The minimum and
maximum number of invocations, which we used for the
dual-bound threshold functions, were ✏min

25 [2] = 1564 and
✏max
25 [2] = 9665 respectively.

As indicated before, threshold vectors are generated by
observing the system in a learning mode over time, thereby
letting observed executions affect what is considered a
nominal execution. In our example, over the time of the
observations the specific values indicated arose. For m25 this
meant that as long as p̂k

25[2] was in the interval [1564, 9665]
the execution was considered nominal.

IV. CONCLUSIONS

A prototype of a real-time weather responsive system
has been described. This system can take real-time weather
data and modify traffic signal timing within safety standard.
The design of the system employs a state-of-the-art design
methodology that incorporates design for survivability. It
allows to monitor its executions to detect 1) violations of
dependencies of operations, functionalities, and modules, and
2) the detection of off-nominal observed execution profiles.
The latter is established by checking if the observed profiles
are within a dual-bound threshold space that defines nominal
profiles. Current efforts are to test the effectiveness of the
detection of off-nominal executions in preparation for field
tests.

Certified Behavior
.
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As operations, functionalities, and modules are called from
within exactly one costatement at a time, it is possible to
precisely determine the functionality and module that are
being executed on behalf of a specific operation. Thus, the
dispatching model results in executions with a low degree of
nondeterminism, which is very desirable when working with
profiles.

With the introduction of costates we can now extend
the definitions of profiles presented in Subsection III-B
to profile on a costate-basis. Thus, the observed profile
p̂ = (p̂1, p̂2, ..., p̂|M |), the kth module profile p̂k, the
centroid p = (p1, p2, ..., p|M |) and dk, i.e., the distance
from p̂k from centroid p, can now be defined on a costate-
basis.

Definitions based on costate ↵:

p̂[↵], p̂k[↵], p[↵] and dk[↵]

Now it is possible for each costate ↵ to have its own
profiling, which is not affected by any non-determinism due
to costate (task) switching, i.e., profiles of costates do not
interfere.

D. Run-time Monitoring and Certified Executions

Run-time monitoring refers to the process of monitoring
the system’s behavior in real-time. The goal is to determine
whether the system performs its specified tasks to specifi-
cations or if there are anomalies in the execution patterns.
The latter could indicate that the system is compromised.
“Has the software experienced a fault, or has the system
been attacked, or is it executing correctly in a fashion
that we just have not observed before?” These questions
have plagued the dependability and security communities for
decades. Fault detection and treatment have been researched
by the dependability and software engineering communities.
Attack recognition, i.e., intrusion detection, is a very complex
problem and detecting patterns or anomalies has been a
constant hot topic in the intrusion detection community, e.g.,
signature-based approaches or anomaly detection. Especially
in anomaly detection the critical issue is where one should
set the threshold for deciding what is normal and what is
not.

Our run-time monitoring employs two approaches:
1) Validation of Dependencies: Given the two types of

dependencies shown in Fig. 4 the system can detect
any violation of mappings from operations to func-
tionalities to modules in GOFM , and any violations of
precedence in each GO, GF and GM .

2) Detection of off-nominal executions: Here observed
profiles are checked to establish if they meet an
expected certified behavior, as will be described in
the rest of this subsection in the context of certifying
nominal profiles.

Detection of off-nominal executions is less precise of a sci-
ence than checking for precedence violations. Our approach
to the first does not attempt to mimic anomaly detection, but

it utilizes the detection of previously observed executions
patterns, e.g., profiles, versus those we have just not seen
before. Instead of focusing on “what is abnormal”, we focus
on “what is normal”. Thus everything outside of previously
identified, i.e., nominal, behavior is simply assumed off-
nominal. Nonimal behavior can be refined to a costate level.
Thus, given that different parts of the system execute in
different costates, e.g., the application control loop is in one
costate, the granularity of run-time monitoring is that of a
costate, and thus more accurate than that of a system lacking
that refinement.

The specifics of the instrumentation and how simple data
structures can be used to achieve costate-based profiling is
described in [4]. Using the data from the instrumentation,
i.e., the profiles, one can detect off-nominal executions.
However, rather than identifying off-nominal behavior, we
“certify” nominal executions. Here we describe a new dual-
bound approach to execution certification by extending the
certification of [4]. The result is a more stringent view of
nominal executions.

Certifying behavior per costate is now possible and will
again be described using module profiles, p̂k[↵].

The distance of the observed costate profiles p̂k[↵] from
p[↵] can be used so that departure beyond it indicates non-
certified behavior of costate ↵. Two threshold vectors:

✏max[↵] = (✏max
1 [↵], ..., ✏max

|M | [↵]) (3)

✏min[↵] = (✏min
1 [↵], ..., ✏min

|M | [↵]) (4)

where ✏max
i [↵] and ✏max

i [↵] are the upper and lower
threshold values of mi, representing a dual-bound threshold.

Every observed profile that is in the region between the
two vectors is assumed nominal. Thus we certify a profile
p̂k[↵] to be a nominal profile if

✏min[↵]  p̂k[↵]  ✏max[↵] (5)

i.e., if ✏min
i [↵]  p̂k

i [↵]  ✏max
i [↵] for every 1  i  |M |.

The values of threshold vectors ✏max[↵] and ✏min[↵] are
experimentally determined while the system is in test mode.
Test mode here assumes a controlled environment in which
the system runs normal and is closely observed while no fault
occurs and no attacks on the system take place. In practice
this means that, while in normal operation, the profiles are
tracked over time to derive (or calculate) the desired thresh-
old vectors. In the simplest case this could be the minimal
and maximal observed values of each p̂k

i [↵]. Alternatively,
one could introduce weight functions w, defined per costate,
to be multiplied with the threshold vectors. Then a nominal
profile would satisfy w✏min

i [↵]  p̂k[↵]  w0✏max
i [↵]. For

completeness sake it should be noted that the “threat vector”
of a system is of course unknown, but it appears realistic
to make the assumption that in a controlled environment no
unobserved faults or malicious act can sneak in.
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As operations, functionalities, and modules are called from
within exactly one costatement at a time, it is possible to
precisely determine the functionality and module that are
being executed on behalf of a specific operation. Thus, the
dispatching model results in executions with a low degree of
nondeterminism, which is very desirable when working with
profiles.

With the introduction of costates we can now extend
the definitions of profiles presented in Subsection III-B
to profile on a costate-basis. Thus, the observed profile
p̂ = (p̂1, p̂2, ..., p̂|M |), the kth module profile p̂k, the
centroid p = (p1, p2, ..., p|M |) and dk, i.e., the distance
from p̂k from centroid p, can now be defined on a costate-
basis.

costate ↵, p̂[↵], p̂k[↵], p[↵]

and dk[↵]

Now it is possible for each costate ↵ to have its own
profiling, which is not affected by any non-determinism due
to costate (task) switching, i.e., profiles of costates do not
interfere.

D. Run-time Monitoring and Certified Executions
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constant hot topic in the intrusion detection community, e.g.,
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not.
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dependencies shown in Fig. 4 the system can detect
any violation of mappings from operations to func-
tionalities to modules in GOFM , and any violations of
precedence in each GO, GF and GM .

2) Detection of off-nominal executions: Here observed
profiles are checked to establish if they meet an
expected certified behavior, as will be described in
the rest of this subsection in the context of certifying
nominal profiles.
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described in [4]. Using the data from the instrumentation,
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However, rather than identifying off-nominal behavior, we
“certify” nominal executions. Here we describe a new dual-
bound approach to execution certification by extending the
certification of [4]. The result is a more stringent view of
nominal executions.

Certifying behavior per costate is now possible and will
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where ✏max
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i [↵] are the upper and lower
threshold values of mi, representing a dual-bound threshold.

Every observed profile that is in the region between the
two vectors is assumed nominal. Thus we certify a profile
p̂k[↵] to be a nominal profile if

✏min[↵]  p̂k[↵]  ✏max[↵]

i.e., if ✏min
i [↵]  p̂k

i [↵]  ✏max
i [↵] for every 1  i  |M |.

The values of threshold vectors ✏max[↵] and ✏min[↵] are
experimentally determined while the system is in test mode.
Test mode here assumes a controlled environment in which
the system runs normal and is closely observed while no fault
occurs and no attacks on the system take place. In practice
this means that, while in normal operation, the profiles are
tracked over time to derive (or calculate) the desired thresh-
old vectors. In the simplest case this could be the minimal
and maximal observed values of each p̂k

i [↵]. Alternatively,
one could introduce weight functions w, defined per costate,
to be multiplied with the threshold vectors. Then a nominal
profile would satisfy w✏min

i [↵]  p̂k[↵]  w0✏max
i [↵]. For

completeness sake it should be noted that the “threat vector”
of a system is of course unknown, but it appears realistic
to make the assumption that in a controlled environment no
unobserved faults or malicious act can sneak in.
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A prototype has been built based on a Rabbit 5700 running
Dynamic C version 10.5.4, which has been instrumented to
allow operation, function and module profiling. Initially all
Dynamic C modules were instrumented, including library
modules. However, not having the Dynamic C library source
code we did not instrument the library assembler routines.
That in itself would have been fine, had it not been for the
fact that some of the non-instrumented assembler routines
called C modules, thereby breaking out precedence viola-
tion detection capability. We therefore had to eliminate the
instrumentation to those modules. A total of 71 modules
furnished the data for the observed profiles, the centroid
and the dual-bound threshold vectors. For the figures shown
below a subset of only 56 relevant modules was used.

Fig. 5 shows an actual observed profile which encapsulates
the data transmission from the Clarus systems. The x-axis
indicates the module ID and the y-axis shows the frequencies
in logarithmic scale. The figure depicts profile p̂k[↵] for four
costates: 1) System Configuration, 2) Application Control, 3)
Monitoring and 4) Utilities. As expected, costate 2 with its
application control dominates the spectrum, i.e., p̂k[2]. The
magnitude of the frequencies is of course highly dependent
on the size of the Clarus subscription.

An example of the average, minimum and maximum
frequencies are shown in Fig. 6. The average constitutes
centroid p̂k[↵], in this case p̂k[2] for costate 2. For this
specific Clarus subscription the certification space between
✏min[2] and ✏max[2] appears rather tight. However, the fre-

quency count is shown as log-scale. For example, if we look
at module m25, which is � ��� � � �� �� � � � �� , the actual value
for the centroid p[↵] is p25[2] = 3873. The minimum and
maximum number of invocations, which we used for the
dual-bound threshold functions, were ✏min

25 [2] = 1564 and
✏max
25 [2] = 9665 respectively.

As indicated before, threshold vectors are generated by
observing the system in a learning mode over time, thereby
letting observed executions affect what is considered a
nominal execution. In our example, over the time of the
observations the specific values indicated arose. For m25 this
meant that as long as p̂k

25[2] was in the interval [1564, 9665]
the execution was considered nominal.

IV. CONCLUSIONS

A prototype of a real-time weather responsive system
has been described. This system can take real-time weather
data and modify traffic signal timing within safety standard.
The design of the system employs a state-of-the-art design
methodology that incorporates design for survivability. It
allows to monitor its executions to detect 1) violations of
dependencies of operations, functionalities, and modules, and
2) the detection of off-nominal observed execution profiles.
The latter is established by checking if the observed profiles
are within a dual-bound threshold space that defines nominal
profiles. Current efforts are to test the effectiveness of the
detection of off-nominal executions in preparation for field
tests.
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E. Experimental Results

A prototype has been built based on a Rabbit 5700 running
Dynamic C version 10.5.4, which has been instrumented to
allow operation, function and module profiling. Initially all
Dynamic C modules were instrumented, including library
modules. However, not having the Dynamic C library source
code we did not instrument the library assembler routines.
That in itself would have been fine, had it not been for the
fact that some of the non-instrumented assembler routines
called C modules, thereby breaking out precedence viola-
tion detection capability. We therefore had to eliminate the
instrumentation to those modules. A total of 71 modules
furnished the data for the observed profiles, the centroid
and the dual-bound threshold vectors. For the figures shown
below a subset of only 56 relevant modules was used.

Fig. 5 shows an actual observed profile which encapsulates
the data transmission from the Clarus systems. The x-axis
indicates the module ID and the y-axis shows the frequencies
in logarithmic scale. The figure depicts profile p̂k[↵] for four
costates: 1) System Configuration, 2) Application Control, 3)
Monitoring and 4) Utilities. As expected, costate 2 with its
application control dominates the spectrum, i.e., p̂k[2]. The
magnitude of the frequencies is of course highly dependent
on the size of the Clarus subscription.

An example of the average, minimum and maximum
frequencies are shown in Fig. 6. The average constitutes
centroid p̂k[↵], in this case p̂k[2] for costate 2. For this
specific Clarus subscription the certification space between
✏min[2] and ✏max[2] appears rather tight. However, the fre-

quency count is shown as log-scale. For example, if we look
at module m25, which is filter clarus data, the actual value
for the centroid p[↵] is p25[2] = 3873. The minimum and
maximum number of invocations, which we used for the
dual-bound threshold functions, were ✏min

25 [2] = 1564 and
✏max
25 [2] = 9665 respectively.

As indicated before, threshold vectors are generated by
observing the system in a learning mode over time, thereby
letting observed executions affect what is considered a
nominal execution. In our example, over the time of the
observations the specific values indicated arose. For m25 this
meant that as long as p̂k

25[2] was in the interval [1564, 9665]
the execution was considered nominal.

IV. CONCLUSIONS

A prototype of a real-time weather responsive system
has been described. This system can take real-time weather
data and modify traffic signal timing within safety standard.
The design of the system employs a state-of-the-art design
methodology that incorporates design for survivability. It
allows to monitor its executions to detect 1) violations of
dependencies of operations, functionalities, and modules, and
2) the detection of off-nominal observed execution profiles.
The latter is established by checking if the observed profiles
are within a dual-bound threshold space that defines nominal
profiles. Current efforts are to test the effectiveness of the
detection of off-nominal executions in preparation for field
tests.

Synchronized Profiling
So fare we assumed that there is only one single behavior.  
However, there could be multiple.
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of length n. Analogous to the non-synchronized case, let P̂k
i

denote the behavior set of the kth module profile. Thus P̂k

is the kth set of observed module profiles, observed over
n epochs, which was preceded by P̂k�1, observed over the
previous n epochs, and so forth.

Considering h sequences of n epochs each, we define a
centroid of sets P = (P 1, P 2, ..., P |M |), where

P r = P r [ pi, 1  r  |M | pi =
1
h

hX

j=1

p̂j
i (2)

for each behavior i. Thus P is a |M |-dimensional structure
of sets, and again using the above financial metaphor, each
element represents the “h-day moving average” of a specific
set of stocks (module), where a day is measured as n epochs,
and again we want to track the past in order to establish
“nominal”, i.e., expected, behavior from a set of behaviors.

It should be noted that if each behavior set consists of only
one element, then essentially P is the same as p.

D. Dependency-based Model

The above discussion about profiles does not capture any de-
pendencies between operations, functionalities, and modules,
nor does it capture dependencies among them. We will refer
to the first case as inter-dependencies and the latter as intra-
dependencies.

E. Inter-dependencies

The relationship between operations, functions, and mod-
ules is defined by a graph GOFM , where the superscript simply
indicates that the graph maps from O to F to M . The term
inter-dependencies stems from the fact that GOF and GFM are
bipartite graphs and GOFM is a tripartite graph. An example
is depicted in Figure 4, which shows three operations o1, o2

and o3. The operations utilize specific functionalities, e.g., o1

uses functionalities f1 and f2. Incidentally, f2 is also used by
o3. The functionalities are implemented by modules, e.g., f3

is implemented by module m4, whereas f4 is realized by m4,
m5, and m6. Checking inter-dependencies allows to identify
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Fig. 4. Mappings in (O ⇥ F ⇥M )

any violation of mappings. For example if during the service
of functionality f1 module m2 would be invoked, then at the
functionality level one can detect a violation, since checking
the graph one knows that m2 is not utilized for f1. Similarly,
at the module level the violation would be detected as m2

finds out that it should not be called as part of f1 services.

Violations of inter-dependencies may be the result of scenar-
ios where the mapping from specification to code is different
than the reverse mapping, i.e., from code back to specification.
In the latter case the code does more than it is supposed to
do.

Sometimes there is a one-to-one and onto mapping from op-
erations to functionalities, which is the case in our application.
Then the mapping of (O⇥F⇥M ) can be reduced to (O⇥M ),
which is defined by GOM . We will refer to this mapping and its
implied simplification as Mapping Simplification Assumption
throughout the paper.

F. Intra-dependencies
It is not only of interest to know which functionality is used

by an operation or which modules are used by a functionality,
but also to know the dependencies within operations, function-
alities, or modules. Those intra-dependencies can be defined
by precedence graphs and are shown within the shaded areas
of Figure 5. Specifically, dependencies between operations
are defined by graph GO = (O,�O), where �O defines a
precedence relation on the operations in O, i.e., if oj depends
on oi then (oi, oj) is in �O. Any violation of the precedence
indicates a problem in the control flow of operations. We
define similar graphs for functionalities and modules. Thus
GF = (F,�F ) and GM = (M,�M ) are the graphs defining
calling relationships between functionalities and modules re-
spectively. It should be noted that GM is the static call graph
of modules in M created by the compiler. The operational,
functional, and module dependency graphs are used to detect
invalid or previously unobserved transitions. In Figure 5 the

O MF O M

Fig. 5. Dependencies within operations, functionalities, and modules. Com-
plete model (left), Simplified model with one-to-one and onto mapping in
(O ⇥ F ) (right)

intra-dependencies are shown with solid arrows. The intra-
dependencies are indicated by dotted arrows. Whereas the left
part of Figure 5 shows the complete dependencies, the sim-
plified model under the Mapping Simplification Assumption
is to the right.

G. Sensor-based Model
Not every behavior can be extracted from profiles or depen-

dencies. Sometimes, specific data sensors are needed in order
to observe specific data values or trigger exceptions, e.g., as
the result of abnormal, missing, or unknown data items.

1) Exception Triggers: An exception trigger array has been
implemented to identify and profile exceptions. An example
of such trigger is the detection that a file that is supposed to
be accessed does not exist, that specific external sensor data
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and Configuration Management System.

1.2 Contributions
The contributions of this research are: 1) a measurement-

based design, run-time monitoring, and adaptation method-
ology that achieves higher accuracy by reducing the non-
determinism of executions, 2) the specification of a gen-
eral formal model that takes advantage of decreased non-
determinism of executions (which has the model of [4] as
a special case), 3) real-time profiling that allows detecting
executions that deviate from certified executions of costate-
ments (explained in subsection 2.4), together with 4) the
detection of violations of precedence constraints at the op-
erational, functional, and module level, as they could occur
as the result of code injections, unexpected or unintended
executions, as well as any attacks that deviate from the cer-
tified behavior.

2. FORMAL EXECUTION MODEL
During operation of the system, and with proper instru-

mentation of the software, one can get a “life” picture of
how the system is performing in real time, e.g., what the
execution of a typical operation looks like, how often func-
tionalities are called by a specific operation, what mix of
functionalities is instantiated over a certain window of ob-
servation, or how often certain modules get called during a
time interval. All of this information is captured in profiles.
Calling behavior, e.g., operational sequences, is embedded
in dependencies identified in static or dynamic precedence
graphs, e.g., the call graph of modules.

2.1 Principles and Definitions
The notation and general execution model described be-

low are partially adapted and restated from [4] to suit the
more deterministic execution environment of this applica-
tion. The Rabbit executes a set of operations O. These
operations constitute the operational machine. The tran-
sition from one operation to another marks an operational
epoch. Each operation oi uses one or more functionalities
fj from a set F of functionalities. Similar to the opera-
tional epoch the functional epoch is defined by transitions
from one functionality to another. Functionalities are im-
plemented by code modules written in Dynamic C, which is
a C-like language with a unique multitasking environment
(see subsection 2.4). The set of modules M is thus the im-
plementation of the functionalities in code. The frequency
spectrum of operations, functionalities and modules define
the operational, functional and module profile respectively.
These profiles will be used later to define certified opera-
tions.

The relationship between operations, functions, and mod-
ules is defined by a graph GOFM , where the superscript sim-
ply indicates that the graph maps from O to F to M . An
example is depicted in Figure 2, which shows three opera-
tions o1, o2 and o3. The operations utilize specific function-
alities, e.g., o1 uses functionalities f1 and f2. Incidentally,
f2 is also used by o3. The functionalities are implemented
by Dynamic C modules, e.g., f3 is implemented by module
m4, whereas f4 is realized by m4, m5, and m6.

2.2 Profiles
Staying consistent with the notation of [4] we will use let-

ters u, q and p for operational, functional and module pro-
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Figure 2: Mappings in (O ⇥ F ⇥M)

files respectively. Let ul denote the probability that the sys-
tem is executing operation ol. Then u =< u1, u2, ..., u|O| >
is the operational profile of the system.

During execution of the system we are interested in ob-
serving the operational profile over n epochs. This observed
profile is û =< û1, û2, ..., û|O| >, where ûi = ci/n is the
fraction of system activity due to operation oi and ci is the
count of invocations of oi. As the system activity is con-
tinuously monitored, which implies that operational profiles
are generated and analyzed, we want to keep track of these
profiles. Let ûk denote the kth operational profile. Thus
ûk is the kth observed operational profile, observed over n
operational epochs, which was preceded by ûk�1, observed
over the previous n operational epochs, and so forth.

Just as in [4], if we consider m sequences of n epochs each,
we can define a centroid u =< u1, u2, ..., u|O| > where

ui =
1
m

mX

j=1

ûj
i

and the distance from ûk from centroid u is given by

dk =
nX

i=1

(ui � ûk
i )2

We will later analyze observed profiles and how they deviate
from the centroid.

2.3 Dependencies
Whereas the example in Figure 2 shows the relationship

between operations, functionalities, and modules, it does not
contain any information about dependencies of operations in
O, functionalities in F , or modules in M .

The relationship between operations is defined by graph
GO = (O,�), where � (in our application) defines a partial
order relation on the operations in O, i.e., if oj depends on
oi then (oi, oj) 2�. In the example of Figure 2, if o1 is
the operation “obtain data”, o2 is “analyze data”, and o3 is
“adjust controller”, then the logical dependencies among the
operations are o1 � o2 and o2 � o3. Any violation of the
partial order indicates a problem in the control flow of the
program.

We define similar graphs for functionalities and modules,
however, the precedence relation, <, in those cases is a gen-
eral precedence relation and not necessarily a partial order,
e.g., the graph may not be acyclic. Thus GF = (F, <) and
GM = (M, <) are the graphs defining calling relationships
between functionalities and modules respectively. It should
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based design, run-time monitoring, and adaptation method-
ology that achieves higher accuracy by reducing the non-
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eral formal model that takes advantage of decreased non-
determinism of executions (which has the model of [4] as
a special case), 3) real-time profiling that allows detecting
executions that deviate from certified executions of costate-
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how the system is performing in real time, e.g., what the
execution of a typical operation looks like, how often func-
tionalities are called by a specific operation, what mix of
functionalities is instantiated over a certain window of ob-
servation, or how often certain modules get called during a
time interval. All of this information is captured in profiles.
Calling behavior, e.g., operational sequences, is embedded
in dependencies identified in static or dynamic precedence
graphs, e.g., the call graph of modules.

2.1 Principles and Definitions
The notation and general execution model described be-

low are partially adapted and restated from [4] to suit the
more deterministic execution environment of this applica-
tion. The Rabbit executes a set of operations O. These
operations constitute the operational machine. The tran-
sition from one operation to another marks an operational
epoch. Each operation oi uses one or more functionalities
fj from a set F of functionalities. Similar to the opera-
tional epoch the functional epoch is defined by transitions
from one functionality to another. Functionalities are im-
plemented by code modules written in Dynamic C, which is
a C-like language with a unique multitasking environment
(see subsection 2.4). The set of modules M is thus the im-
plementation of the functionalities in code. The frequency
spectrum of operations, functionalities and modules define
the operational, functional and module profile respectively.
These profiles will be used later to define certified opera-
tions.

The relationship between operations, functions, and mod-
ules is defined by a graph GOFM , where the superscript sim-
ply indicates that the graph maps from O to F to M . An
example is depicted in Figure 2, which shows three opera-
tions o1, o2 and o3. The operations utilize specific function-
alities, e.g., o1 uses functionalities f1 and f2. Incidentally,
f2 is also used by o3. The functionalities are implemented
by Dynamic C modules, e.g., f3 is implemented by module
m4, whereas f4 is realized by m4, m5, and m6.

2.2 Profiles
Staying consistent with the notation of [4] we will use let-

ters u, q and p for operational, functional and module pro-
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Figure 2: Mappings in (O ⇥ F ⇥M)

files respectively. Let ul denote the probability that the sys-
tem is executing operation ol. Then u =< u1, u2, ..., u|O| >
is the operational profile of the system.

During execution of the system we are interested in ob-
serving the operational profile over n epochs. This observed
profile is û =< û1, û2, ..., û|O| >, where ûi = ci/n is the
fraction of system activity due to operation oi and ci is the
count of invocations of oi. As the system activity is con-
tinuously monitored, which implies that operational profiles
are generated and analyzed, we want to keep track of these
profiles. Let ûk denote the kth operational profile. Thus
ûk is the kth observed operational profile, observed over n
operational epochs, which was preceded by ûk�1, observed
over the previous n operational epochs, and so forth.

Just as in [4], if we consider m sequences of n epochs each,
we can define a centroid u =< u1, u2, ..., u|O| > where

ui =
1
m

mX

j=1

ûj
i

and the distance from ûk from centroid u is given by

dk =
nX

i=1

(ui � ûk
i )2

We will later analyze observed profiles and how they deviate
from the centroid.

2.3 Dependencies
Whereas the example in Figure 2 shows the relationship

between operations, functionalities, and modules, it does not
contain any information about dependencies of operations in
O, functionalities in F , or modules in M .

The relationship between operations is defined by graph
GO = (O,�), where � (in our application) defines a partial
order relation on the operations in O, i.e., if oj depends on
oi then (oi, oj) 2�. In the example of Figure 2, if o1 is
the operation “obtain data”, o2 is “analyze data”, and o3 is
“adjust controller”, then the logical dependencies among the
operations are o1 � o2 and o2 � o3. Any violation of the
partial order indicates a problem in the control flow of the
program.

We define similar graphs for functionalities and modules,
however, the precedence relation, <, in those cases is a gen-
eral precedence relation and not necessarily a partial order,
e.g., the graph may not be acyclic. Thus GF = (F, <) and
GM = (M, <) are the graphs defining calling relationships
between functionalities and modules respectively. It should
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precedence relation on theoperations inO, i.e., if oj depends
on oi then (oi, oj) is in�O. Any violation of the precedence
indicates a problem in the control flow of operations of the
program. We define similar graphs for functionalities and
modules. Thus GF = (F,�F ) and GM = (M,�M ) are the
graphs defining calling relationships between functionalities
and modules respectively. It should be noted that GM is the
static call graph of modules in M created by the compiler.
The operational, functional, and module dependency graphs
are used to detect invalid or previously unobserved transi-
tions.

B. Profiles and Profiling
Leaning on the notation of [8] wewill use letters u, q and

p for operational, functional andmoduleprofiles respectively.
The notation is introduced using module profiling as an
example. Let pl denote the probability that the system is
executing module ml. Then p = (p1, p2, ..., p|M |) is the
module profile of the system, i.e., it is the probability vector
of the modules in M .
During execution of the system we are interested in

observing the module profile over n epochs. This observed
profile is p̂ = (p̂1, p̂2, ..., p̂|M |), where p̂i = ci/n is the
fraction of system activity due to invocations of modulemi

and ci is the count of invocations of mi. As the software
executes, invocations of modules are continuously monitored
and module profiles are generated and analyzed. Wewant to
keep track of these profiles. Let p̂k denote the kth module
profile. Thus p̂k is thekth observedmoduleprofile, observed
over n epochs, which was preceded by p̂k�1, observed over
the previous n epochs, and so forth.
To get a feel for the expected evolving profile of the

system, we want to establish the module profile equivalent
of an “h-day moving average” in financial stock movements,
i.e., we will derive a centroid that will serve as a reference
for observed profiles. For that, just as in [8], we consider
h sequences of n epochs each and define a centroid p =
(p1, p2, ..., p|M |), where

pi =
1
h

hX

j=1

p̂j
i (1)

Thus p is a |M |-dimensional vector, and using the above
financial metaphor, each element represents the “h-day mov-
ing average” of a specific stock (module), where a day is
measured as n epochs. Furthermore, just as in the stock

market, we don’t know what the future brings but find it
useful to track the past in order to establish “nominal” , i.e.,
expected, behavior.
One can compute the distance of an observed profile p̂k

from centroid p to get a distance scalar dk

dk =
nX

i=1

(pi � p̂k
i )2 (2)

Given the computational realities of the Rabbit, we actually
usedk =

Pn
i=1 |(pi�p̂k

i )|, rather than thesquare. Thegoal is
to analyze theeffectiveness of using thedistanceof observed
profiles from the centroid to detect off-nominal executions.

C. Run-time Model
One of the challenges in monitoring a system is dealing

with theeffectsof nondeterminism of theexecutions. Typical
sources of nondeterminism are interrupts, or even more
importantly, context switching in multiprocessing based on
time slicing. The Rabbit system uses a single processor in
which multitasking is not achieved using time slicing; rather
it is implemented using a model defined by costatements.
A costatement is defined as a task in a nonpreemptive mul-
titasking model. In practice, the main program of a control
applications runs costatements (the tasks) in an endless loop,
cycling from one costatement to the next. Each costatement
has a statement counter, i.e., a program counter, which
indicates which instruction of the costatement will execute
when it gets a chance to run. Execution is switched from one
costatement (of the infinite loop) to the next in a round-robin
fashion when the currently executing costatement “yields” to
the next costatement using explicit commands such as yield,
abort or waitfor(event). Note that these yielding mechanisms
represent a model that is based on good behavior. The state
of a costatement is called a costate. We will use the terms
costatement and costate interchangeably.
An execution model in which there are no externally

initiated task switches executes with a low level of non-
deterministism, i.e., a task switch is explicitly demanded
by the currently executing task: the active costatement. On
the other hand this means however that it is possible for a
costatement to cause starvation by not yielding. However,
a special mechanism called watchdog can be used to force
timer interrupts. In this case the system deviates from its
otherwise nonpreemptive execution model.
Asoperations, functionalities, andmodulesarecalled from

within exactly one costatement at a time, it is possible to
precisely determine the functionality and module that are
being executed on behalf of a specific operation. Thus, the
dispatching model results in executions with a low degree of
nondeterminism, which is very desirable when working with
profiles.
With the introduction of costates we can now extend

the definitions of profiles presented in Subsection III-B to
profile on a costate-basis. Thus, the observed profile p̂ =
(p̂1, p̂2, ..., p̂|M |), the kth module profile p̂k, the centroid
p = (p1, p2, ..., p|M |) and dk, i.e., the distance from p̂k

from centroid p, can now be defined on a costate-basis. For
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GO = (O,�O)

GF = (F,�F )

GM = (M,�M )

defines a precedence relation on the operations in O, i.e.,
if oj depends on oi then (oi, oj) is in �O. Any violation
of the precedence indicates a problem in the control flow
of operations of the program. We define similar graphs for
functionalities and modules.

GF = (F,�F )
GM = (M,�M )

are the graphs defining calling relationships between func-
tionalities and modules respectively. It should be noted
that GM is the static call graph of modules in M created
by the compiler. The operational, functional, and module
dependency graphs are used to detect invalid or previously
unobserved transitions.

B. Profiles and Profiling
Leaning on the notation of [8] we will use letters u, q and

p for operational, functional and module profiles respectively.
The notation is introduced using module profiling as an
example. Let pl denote the probability that the system is
executing module ml. Then p = (p1, p2, ..., p|M |) is the
module profile of the system, i.e., it is the probability vector
of the modules in M .

During execution of the system we are interested in
observing the module profile over n epochs. This observed
profile is p̂ = (p̂1, p̂2, ..., p̂|M |), where p̂i = ci/n is the
fraction of system activity due to invocations of module mi

and ci is the count of invocations of mi. As the software
executes, invocations of modules are continuously monitored
and module profiles are generated and analyzed. We want to
keep track of these profiles. Let p̂k denote the kth module
profile. Thus p̂k is the kth observed module profile, observed
over n epochs, which was preceded by p̂k�1, observed over
the previous n epochs, and so forth.

To get a feel for the expected evolving profile of the
system, we want to establish the module profile equivalent
of an “h-day moving average” in financial stock movements,
i.e., we will derive a centroid that will serve as a reference
for observed profiles. For that, just as in [8], we consider

h sequences of n epochs each and define a centroid p =
(p1, p2, ..., p|M |), where

pi =
1
h

hX

j=1

p̂j
i (1)

Thus p is a |M |-dimensional vector, and using the above
financial metaphor, each element represents the “h-day mov-
ing average” of a specific stock (module), where a day is
measured as n epochs. Furthermore, just as in the stock
market, we don’t know what the future brings but find it
useful to track the past in order to establish “nominal”, i.e.,
expected, behavior.

One can compute the distance of an observed profile p̂k

from centroid p to get a distance scalar dk

dk =
nX

i=1

(pi � p̂k
i )2 (2)

Given the computational realities of the Rabbit, we actually
use dk =

Pn
i=1 |(pi�p̂k

i )|, rather than the square. The goal is
to analyze the effectiveness of using the distance of observed
profiles from the centroid to detect off-nominal executions.

C. Run-time Model
One of the challenges in monitoring a system is dealing

with the effects of nondeterminism of the executions. Typical
sources of nondeterminism are interrupts, or even more
importantly, context switching in multiprocessing based on
time slicing. The Rabbit system uses a single processor in
which multitasking is not achieved using time slicing; rather
it is implemented using a model defined by costatements.
A costatement is defined as a task in a nonpreemptive mul-
titasking model. In practice, the main program of a control
applications runs costatements (the tasks) in an endless loop,
cycling from one costatement to the next. Each costatement
has a statement counter, i.e., a program counter, which
indicates which instruction of the costatement will execute
when it gets a chance to run. Execution is switched from one
costatement (of the infinite loop) to the next in a round-robin
fashion when the currently executing costatement “yields” to
the next costatement using explicit commands such as yield,
abort or waitfor(event). Note that these yielding mechanisms
represent a model that is based on good behavior. The state
of a costatement is called a costate. We will use the terms
costatement and costate interchangeably.

An execution model in which there are no externally
initiated task switches executes with a low level of non-
deterministism, i.e., a task switch is explicitly demanded
by the currently executing task: the active costatement. On
the other hand this means however that it is possible for a
costatement to cause starvation by not yielding. However,
a special mechanism called watchdog can be used to force
timer interrupts. In this case the system deviates from its
otherwise nonpreemptive execution model.

As operations, functionalities, and modules are called from
within exactly one costatement at a time, it is possible to
precisely determine the functionality and module that are

Intra-dependencies
In our current system we simplify to
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of length n. Analogous to the non-synchronized case, let P̂k
i

denote the behavior set of the kth module profile. Thus P̂k

is the kth set of observed module profiles, observed over
n epochs, which was preceded by P̂k�1, observed over the
previous n epochs, and so forth.

Considering h sequences of n epochs each, we define a
centroid of sets P = (P 1, P 2, ..., P |M |), where

P r = P r [ pi, 1  r  |M | pi =
1
h

hX

j=1

p̂j
i (2)

for each behavior i. Thus P is a |M |-dimensional structure
of sets, and again using the above financial metaphor, each
element represents the “h-day moving average” of a specific
set of stocks (module), where a day is measured as n epochs,
and again we want to track the past in order to establish
“nominal”, i.e., expected, behavior from a set of behaviors.

It should be noted that if each behavior set consists of only
one element, then essentially P is the same as p.

D. Dependency-based Model

The above discussion about profiles does not capture any de-
pendencies between operations, functionalities, and modules,
nor does it capture dependencies among them. We will refer
to the first case as inter-dependencies and the latter as intra-
dependencies.

E. Inter-dependencies

The relationship between operations, functions, and mod-
ules is defined by a graph GOFM , where the superscript simply
indicates that the graph maps from O to F to M . The term
inter-dependencies stems from the fact that GOF and GFM are
bipartite graphs and GOFM is a tripartite graph. An example
is depicted in Figure 4, which shows three operations o1, o2

and o3. The operations utilize specific functionalities, e.g., o1

uses functionalities f1 and f2. Incidentally, f2 is also used by
o3. The functionalities are implemented by modules, e.g., f3

is implemented by module m4, whereas f4 is realized by m4,
m5, and m6. Checking inter-dependencies allows to identify
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any violation of mappings. For example if during the service
of functionality f1 module m2 would be invoked, then at the
functionality level one can detect a violation, since checking
the graph one knows that m2 is not utilized for f1. Similarly,
at the module level the violation would be detected as m2

finds out that it should not be called as part of f1 services.

Violations of inter-dependencies may be the result of scenar-
ios where the mapping from specification to code is different
than the reverse mapping, i.e., from code back to specification.
In the latter case the code does more than it is supposed to
do.

Sometimes there is a one-to-one and onto mapping from op-
erations to functionalities, which is the case in our application.
Then the mapping of (O⇥F⇥M ) can be reduced to (O⇥M ),
which is defined by GOM . We will refer to this mapping and its
implied simplification as Mapping Simplification Assumption
throughout the paper.

F. Intra-dependencies
It is not only of interest to know which functionality is used

by an operation or which modules are used by a functionality,
but also to know the dependencies within operations, function-
alities, or modules. Those intra-dependencies can be defined
by precedence graphs and are shown within the shaded areas
of Figure 5. Specifically, dependencies between operations
are defined by graph GO = (O,�O), where �O defines a
precedence relation on the operations in O, i.e., if oj depends
on oi then (oi, oj) is in �O. Any violation of the precedence
indicates a problem in the control flow of operations. We
define similar graphs for functionalities and modules. Thus
GF = (F,�F ) and GM = (M,�M ) are the graphs defining
calling relationships between functionalities and modules re-
spectively. It should be noted that GM is the static call graph
of modules in M created by the compiler. The operational,
functional, and module dependency graphs are used to detect
invalid or previously unobserved transitions. In Figure 5 the

O MF O M

Fig. 5. Dependencies within operations, functionalities, and modules. Com-
plete model (left), Simplified model with one-to-one and onto mapping in
(O ⇥ F ) (right)

intra-dependencies are shown with solid arrows. The intra-
dependencies are indicated by dotted arrows. Whereas the left
part of Figure 5 shows the complete dependencies, the sim-
plified model under the Mapping Simplification Assumption
is to the right.

G. Sensor-based Model
Not every behavior can be extracted from profiles or depen-

dencies. Sometimes, specific data sensors are needed in order
to observe specific data values or trigger exceptions, e.g., as
the result of abnormal, missing, or unknown data items.

1) Exception Triggers: An exception trigger array has been
implemented to identify and profile exceptions. An example
of such trigger is the detection that a file that is supposed to
be accessed does not exist, that specific external sensor data
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be noted that GM is the static call graph of modules in M .
Furthermore, the di�erence in precedence relations should
be noted, i.e., ⇥ denotes a partial order relation, whereas <
in general does not.

The operational, functional, and module dependency graphs
are used to detect invalid transitions.

2.4 Dispatching Model
The Rabbit system uses a single processor in which multi-

tasking is implemented using a model defined by costate-
ments. Simplistically speaking, the system executes one
costatement at a time. Each costatement has a statement
counter, i.e., a program counter, which indicates which in-
struction of the costatement will executed when it gets a
chance to run. Execution is switched from one costatement
to the next when the currently executing costatement yields.
Therefore, the model is based on good behavior. The state
of a costatement is called a costate. In the discussions to
follow, the terms costatement and costate will be used in-
terchangably.

A model with such task-switching properties executes de-
terministic, i.e., a task switch is explicitly demanded by the
currently executing tasks: the costatement. On the other
hand this means however that it is possible for a costate-
ment to cause starvation by not yielding. To resolve such
situation mechanisms like watchdogs and timer interrupts
can be used.

As operations, functionalities, and modules are called from
within exactly one costatements, it is possible to exactly de-
termine the functionality and module that are being exe-
cuted on behave of a specific operation. Thus, the dispatch-
ing model results in executions with a high degree of deter-
minism, which is very desirable when working with profiles.
The alternative would be profiles that mix the frequency
spectrum from all executions together into one inseparable
profile. Here however we can separate the profiles, or even
simpler, let each costate have its own profile.

2.5 Costate Profiling
The concepts and notations derived in Subsection 2.2, i.e.,

the observed profile û =< û1, û2, ..., û|O| >, the kth opera-
tional profile ûk, the centroid u =< u1, u2, ..., u|O| > and
the distance from ûk from centroid u, can now be defined
on a costate-basis. This leads to notation û[p], ûk[p], u[p]
and ûk[p] respectively, where p indicates the costate. Thus
each costate p has its own profiling, which is not a�ected by
any non-determinism due to task switching, i.e., profiles of
costates do not interfere.

Current State of the System: The current state of the sys-
tems is defined by a triplet in the cross product (O�F�M),
which indicates what operation, functionality and module is
executing. To keep track of the current state of the system
a table S is maintained that, for each costate p, indicates
the current executing oi, fj and mk. Thus each row p of the
table indicates the state of costate p, i.e., S[p] = [oi, fj , mk]
indicates that in costate p operation oi is utilizing fj by
executing module mk. Since the system can only be in one
costate at a time, we can tell the exact state of the system by
looking at the table entry of the currently executing costate
p. This means that by using state table S one can determin-
istically map modules to functionalities and functionalities
to operations. This makes our profiling more deterministic
much more precise than in [3].

I am here =========ASDFasdf
Determination of Active Costate: The state of the system

depends on the costate p which is executing. Each costate
receives a unique costate ID. The first costate has p = 1,
the second p = 2 and so forth. To determine which costate
is executing a global variable called ActiveCostateID is de-
fined that is set by each costate 1) when the costate starts
execution, 2) after a yield, and 3) after a waitfor. These
three options cover each possible way that the costate starts
or resumes execution.

Updating the Current State of the System: Now that the
active costate is known, a module, functionality, or oper-
ation knows exactly which costate it belong to by simply
looking at ActiveCostateID. For example, if a module mh

is called it can find out which module it was called from
by simply looking at S[ActiveCostateID] = [oi, fj , mk], to
find out that it was called by mk as part of functionality
fj , which is used by operation oi. This knowledge can be
used, for example, to check if this module call is consistent
with the static call graph GM , before updating the state ta-
ble from mk to mh, i.e., with mh now executing we have
S[ActiveCostateID] = [oi, fj , mh]. Note that a call graph
inconsistency would indicate that the program has been al-
tered.

Frequency Spectra: As indicated previously, operational,
functionality and module profiles are derived from frequency
spectra co, cf and cm respectively. Since it is beneficial to
separate the frequency counts for each costate p and it is
so easy to determine the active costate, each costate has its
own frequency spectrum co[p] of length |O|, where co

i [p] is
the frequency of the ith operation in costate p. Similarly,
we define the frequency spectrum cf [p] of length |F | with
elements cf

i [p] and the module spectrum cm[p] of length |M |
with elements cm

i [p].
Software System Overview: Our application software sys-

tem consists of three costates as shown in Figure 3. The
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Monitor Support
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1  Get Clarus data
2  Receive data from LCS
3  Receive data from Clarus
4  Analyze Clarus data
5  Adjust controller
6  Monitor analysis
7  Monitor adaptive reconfiguration
8  Time synchronization
9  Support routines 

Figure 3: Costates and Operations

first costate implements the application control, which con-
sists of the software that gets the data, analyses it and makes
appropriate adjustments to the controller if necessary. The
individual operations of the application control are described
to the right of the figure. The second costate is the monitor.
It analyses the data collected by the instrumentation and,
if necessary, it will initiate adaptive reconfiguration. The
third costate contains independent support operations, e.g.,
o8 synchronizes the timer of the system with a NIST time
source.

3. RUN-TIME MONITORING

3.1 Instrumentation

Sensor-based Model

40



Sensor-based Model
Not every behavior can be extracted from profiles or 
dependencies.

Specific data sensors are needed to observe specific data 
values or trigger exceptions.
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Exception Triggers
Exception trigger array

identify and profile exceptions, e.g., file does 
not exist, specific sensor data is not longer 
available.

any error condition can be viewed as an 
exception trigger
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Data Sensors
Observation of specific numeric values for 
analysis

Example: the adjustment to the yellow timing

What happens when someone changes to yellow 
time to zero?  Is that possible?
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V. SYSTEM OPERATION & CONTINGENCY MANAGEMENT

In this section we describe the system as it operates and
present data that was collected as part of the system mission
and its monitoring over months of operation, especially the
winter months of 2012.

A. System State Space and Transition Violations
As the system operates in the field it goes through state tran-

sitions, which are monitored by the Operation Monitoring and
Contingency Management System (shown in Figure 2), using
the three monitoring approaches introduced in the beginning
of Section IV.
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Fig. 6. System Module State Machine

The system state space is, in general, complex, as it is
induced by the state space of operations, functionalities, and
modules. In our application, using the Mapping Simplification
Assumption it reduces to the operation state space and module
state space. The module state diagram is shown in Figure 6.
A total of 25 system states can be observed, i.e., S0, ...S24.
For example, state S0 indicates that the software is in function
main(). There are two types of transitions between two states
Si and Sj , represented by arcs between states. The solidly
drawn arcs represent calls, whereas dotted arcs represent
returns, e.g., a call will cause the transition from S1 to S2,
whereas a return will cause the transition from S2 back to S1.
The state machine is derived directly from the software call
graph during compile time of the program.

The operation state space, shown in Figure 7, is much sim-
pler and has only four states corresponding to the operations
indicated in the figure. The combined system state space is
thus the state space induced by the mappings in Figure 5,
considering intra and inter-dependencies. With respect to Fig-
ure 5, the diagrams in Figure 6 and Figure 7 represent the
module and operation intra-dependency graphs respectively.

As the system software executes in costatements the tran-
sitions are verified to detect inter-dependency and intra-
dependency violations described in subsections III-E and III-F
respectively. Any violation of the system state transitions
indicates a serious problem. For example, a intra-dependence
violation of the module states implies that the system is calling
modules that it should not be calling or it is returning to
modules other than intended, e.g., as the result of a buffer
overflow. Another example is if a module is called under an

1

0 2 3

Operations:
0 : Initialize Program
1 : Runtime Timing Module
2 : Get Weather Data
3 : Update Controller

Fig. 7. System Operation State Machine

operation that should utilize it, or a module returns to another
module that is not operating under the same operation. Both
cases can be deducted from the inter-dependency mappings.
Upon detection of any dependence violation the contingency
management system initiates fail-safe mode and issues a
notification about the nature of the violation.

B. Application Control
The operations of the application control system was de-

picted in Figure 7. The actions of the actual control sub-
system, which is running in the costatement that implements
the real-time traffic control application, are shown in the
simplified flow chart in Figure 8. The operation epoch is 15
minutes, which is the fixed time interval at which the real-
time weather condition data is available from the Clarus server
for specific subscriptions (indicated by subscription numbers).
First the Rabbit determines the time and composes the URL
that contains the comma separated values, a csv file. It then
uses a recovery block strategy [11] to get the data from a set
of data base servers. In our current implementation this is a
Local Clarus Server (LCS) and the actual Clarus server shown
in Figure 1, thus implementing a dual redundant system. First
the LCS is queried and if the data cannot be retrieved within
a certain amount of retries, then the Clarus server is tried. If
it fails to provide the data after a certain amount of retries,
the Contingency Management System initiates fail-safe mode,
which is a forward recovery mechanism bringing the system
into a desired default state. Once entering fail-safe mode the
system attempts to reestablish normal operation again. If data
acquisition was successful via one of the alternatives, then
the traffic controller computes the adjustments that reflect
the environment parameters and adjusts the signal controller
accordingly.

Certain assumptions must be made about the quality of
the data supplied by the Clarus server. We simply assume
that the data received is correct since Clarus is designed
using data quality checking algorithms [3]. On the other
hand, the computed signal adjustment values, as computed
by the Rabbit, are not assumed to be correct, as a fault
may have occurred during computation. Therefore detection of
anomalies through data sensor analysis, the second monitoring
approach in Section IV, is implemented. It tests the computed
signal changes for range violations from what was expected.
If a violation is detected the contingency management system
enters fail-safe mode. There are many other checking mecha-
nisms implied in the flowchart of Figure 8, including reaction
to network connection problems, data corruption, loss of time
synchronization, e.g., after reboot as the result of power

System Operations State Machine
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V. SYSTEM OPERATION & CONTINGENCY MANAGEMENT

In this section we describe the system as it operates and
present data that was collected as part of the system mission
and its monitoring over months of operation, especially the
winter months of 2012.

� . S�stem State Space and Transition � io�ations

As the system operates in the field it goes through state tran-
sitions, which are monitored by the Operation Monitorin� and
� ontin� enc� Mana� ement S�stem (shown in Figure 2), using
the three monitoring approaches introduced in the beginning
of Section IV.
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Fig. 6. System Module State Machine

The system state space is, in general, complex, as it is
induced by the state space of operations, functionalities, and
modules. In our application, using the Mapping Simplification
Assumption it reduces to the operation state space and module
state space. The module state diagram is shown in Figure 6.
A total of 25 system states can be observed, i.e., S0, ...S24.
For example, state S0 indicates that the software is in function
main(). There are two types of transitions between two states
Si and Sj , represented by arcs between states. The solidly
drawn arcs represent ca��s, whereas dotted arcs represent
returns, e.g., a call will cause the transition from S1 to S2,
whereas a return will cause the transition from S2 back to S1.
The state machine is derived directly from the software call
graph during compile time of the program.

The operation state space, shown in Figure 7, is much sim-
pler and has only four states corresponding to the operations
indicated in the figure. The combined system state space is
thus the state space induced by the mappings in Figure 5,
considering intra and inter-dependencies. With respect to Fig-
ure 5, the diagrams in Figure 6 and Figure 7 represent the
module and operation intra-dependency graphs respectively.

As the system software executes in costatements the tran-
sitions are verified to detect inter-dependency and intra-
dependency violations described in subsections III-E and III-F
respectively. Any violation of the system state transitions
indicates a serious problem. For example, a intra-dependence
violation of the module states implies that the system is calling
modules that it should not be calling or it is returning to
modules other than intended, e.g., as the result of a buffer
overflow. Another example is if a module is called under an

1

0 2 3

Operations:
0 : Initialize Program
1 : Runtime Timing Module
2 : Get Weather Data
3 : Update Controller

Fig. 7. System Operation State Machine

operation that should utilize it, or a module returns to another
module that is not operating under the same operation. Both
cases can be deducted from the inter-dependency mappings.
Upon detection of any dependence violation the contingency
management system initiates fail-safe mode and issues a
notification about the nature of the violation.

� . � pp�ication � ontro�

The operations of the application control system was de-
picted in Figure 7. The actions of the actual control sub-
system, which is running in the costatement that implements
the real-time traffic control application, are shown in the
simplified flow chart in Figure 8. The operation epoch is 15
minutes, which is the fixed time interval at which the real-
time weather condition data is available from the Clarus server
for specific subscriptions (indicated by subscription numbers).
First the Rabbit determines the time and composes the URL
that contains the comma separated values, a csv file. It then
uses a recovery block strategy [11] to get the data from a set
of data base servers. In our current implementation this is a
Local Clarus Server (LCS) and the actual Clarus server shown
in Figure 1, thus implementing a dual redundant system. First
the LCS is queried and if the data cannot be retrieved within
a certain amount of retries, then the Clarus server is tried. If
it fails to provide the data after a certain amount of retries,
the Contingency Management System initiates fai��safe mode,
which is a forward recovery mechanism bringing the system
into a desired default state. Once entering fail-safe mode the
system attempts to reestablish normal operation again. If data
acquisition was successful via one of the alternatives, then
the traffic controller computes the adjustments that reflect
the environment parameters and adjusts the signal controller
accordingly.

Certain assumptions must be made about the quality of
the data supplied by the Clarus server. We simply assume
that the data received is correct since Clarus is designed
using data quality checking algorithms [3]. On the other
hand, the computed signal adjustment values, as computed
by the Rabbit, are not assumed to be correct, as a fault
may have occurred during computation. Therefore detection of
anomalies through data sensor analysis, the second monitoring
approach in Section IV, is implemented. It tests the computed
signal changes for range violations from what was expected.
If a violation is detected the contingency management system
enters fail-safe mode. There are many other checking mecha-
nisms implied in the flowchart of Figure 8, including reaction
to network connection problems, data corruption, loss of time
synchronization, e.g., after reboot as the result of power
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failure, inability of finding valid Clarus data subscriptions,
changing the LCS Internet address, etc. Some of these issues
require the contingency management system to enter a receive
mode, in which configuration information, e.g., the IP of a new
LCS or Clarus subscription number, is communicated to the
system.

C. Application Control Performance
The system is installed in Northern Idaho and has been

observed over the most interesting period, which are the winter
months, as adverse weather conditions are common. The
adjustments of the yellow time of the traffic signals has been
observed over several months. As the environment conditions
worsen the yellow time is increased to improve safety, e.g.,
during ice or snow a longer yellow period allows more time
to safely clear the intersection. The adjustment value computed
by the Rabbit is communicated to the traffic controller, which
in turn makes changes to a default value according to the
percentage given by the adjustment value.

The yellow adjustment values for 53 interesting operational
epochs during November and December of 2012 are shown
in Figure 9. The adjustments are in the range of 10% to
50% of the default value. However, how does one know if
these values are correct? Figure 10 shows the data of the
data sensor analysis and it indeed confirms the adjustments
to be reasonable. The figure shows the values Surface Status,
Surface Temperature, which are Clarus parameters, Weather
Conditions, and the adjustment values called Yellow. The first
observation is that value Yellow follows the weather conditions.
Next, looking at the surface temperature one can see that
Yellow is increased as the temperature decreases. An alternate
reference is the Surface Status, ST , a Clarus value that shown
in the lowest graph of the figure. Larger values of ST indicate
deteriorating conditions, whereas conditions improve as ST
become smaller. The values for ST are in the interval [1, 5].
However, if one carefully examines the graph, one can see
that there are five cases where ST = 0, which represents
an error condition, i.e., the Clarus file was not available.

The contingency management system recognized the fault and
adjusted it to the most recent value, as can be observed in
Figure 9.
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Fig. 11. Exception triggers

In addition to the data sensor analysis we also have ex-
ception triggers. Figure 11 shows five trigger and the count,
again based on the 53 observed operational epochs, indicates
how often exceptions were triggered. For example only two
exceptions were never triggered. A trigger in this case implies
that data needed for the computation of the yellow adjustments
were missing in the data files. In fact, two of the five triggers
were fired 47 times, i.e., out of 53 epochs, 47 did not include
the specific sensor data, and 5 times the entire Clarus files
were empty. However, the algorithm engine computing the
adjustment could adapt to these scenarios since even in the
absence of data the system could produce reasonable adjust-
ment values. The data in the figure was actually observed as
the consequence of changes in the data supplied form the ESS
or Clarus. Since we have no control over what ESS sensor data
may be missing, perhaps due to defects or product changes,
the algorithm computing the adjustments to the application
must be able to tolerate the missing data, which represent
an omission fault. The exception triggers are used to verify
the adjustment values, e.g., as seen in Figure 9, and provide
adaptation.

Exception Triggers

48

IEEE TRANSACTIONS ON CYBERNETICS, VOL. XX, NO. X, XXX 2013 9

Application 
Costate

Wait 
Interval

Get Data

Select Next Data Source 
and Start connection

Tried all data 
Sources

Reach Max 
No. of Trials?

Connect to 
Selected 

Data Source

Connection 
Established ?

Try First Data 
Source again

Send Alerts & begin 
Receive Mode

Problem 
Solved ?

Enter Fail 
Safe Mode

Data is 
Correct ?

Adjust Signal 
Controller to Default

Analyze Filtered 
Data

Calc. Yellow 
change

Adjust Signal Controller

Validity 
Check ? Y

N

N

N

N

N

N
Y

Y

Y

Y

Y

Fig. 8. Flowchart of Application Control Costatement

failure, inability of finding valid Clarus data subscriptions,
changing the LCS Internet address, etc. Some of these issues
require the contingency management system to enter a receive
mode, in which configuration information, e.g., the IP of a new
LCS or Clarus subscription number, is communicated to the
system.

C. Application Control Performance
The system is installed in Northern Idaho and has been

observed over the most interesting period, which are the winter
months, as adverse weather conditions are common. The
adjustments of the yellow time of the traffic signals has been
observed over several months. As the environment conditions
worsen the yellow time is increased to improve safety, e.g.,
during ice or snow a longer yellow period allows more time
to safely clear the intersection. The adjustment value computed
by the Rabbit is communicated to the traffic controller, which
in turn makes changes to a default value according to the
percentage given by the adjustment value.

The yellow adjustment values for 53 interesting operational
epochs during November and December of 2012 are shown
in Figure 9. The adjustments are in the range of 10% to
50% of the default value. However, how does one know if
these values are correct? Figure 10 shows the data of the
data sensor analysis and it indeed confirms the adjustments
to be reasonable. The figure shows the values Surface Status,
Surface Temperature, which are Clarus parameters, Weather
Conditions, and the adjustment values called Yellow. The first
observation is that value Yellow follows the weather conditions.
Next, looking at the surface temperature one can see that
Yellow is increased as the temperature decreases. An alternate
reference is the Surface Status, ST , a Clarus value that shown
in the lowest graph of the figure. Larger values of ST indicate
deteriorating conditions, whereas conditions improve as ST
become smaller. The values for ST are in the interval [1, 5].
However, if one carefully examines the graph, one can see
that there are five cases where ST = 0, which represents
an error condition, i.e., the Clarus file was not available.

The contingency management system recognized the fault and
adjusted it to the most recent value, as can be observed in
Figure 9.
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Fig. 11. Exception triggers

In addition to the data sensor analysis we also have ex-
ception triggers. Figure 11 shows five trigger and the count,
again based on the 53 observed operational epochs, indicates
how often exceptions were triggered. For example only two
exceptions were never triggered. A trigger in this case implies
that data needed for the computation of the yellow adjustments
were missing in the data files. In fact, two of the five triggers
were fired 47 times, i.e., out of 53 epochs, 47 did not include
the specific sensor data, and 5 times the entire Clarus files
were empty. However, the algorithm engine computing the
adjustment could adapt to these scenarios since even in the
absence of data the system could produce reasonable adjust-
ment values. The data in the figure was actually observed as
the consequence of changes in the data supplied form the ESS
or Clarus. Since we have no control over what ESS sensor data
may be missing, perhaps due to defects or product changes,
the algorithm computing the adjustments to the application
must be able to tolerate the missing data, which represent
an omission fault. The exception triggers are used to verify
the adjustment values, e.g., as seen in Figure 9, and provide
adaptation.
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Fig. 9. Adjustments of yellow period in % over winter months
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Fig. 10. Yellow adjustments during winter months related to weather conditions

D. Certified Executions for Resilient Operation

The third monitoring approach is check for off-nominal exe-
cutions. Due to the fact that costatements are non-preemptive,
the observed modular profiles of one costate is not affected
by executions of another costate. This however only holds in
the absence of parallelism. Due to the fact that the embedded
system has a single processor, there cannot be true parallelism
that could violate the assumptions that at any given time the
system is in only one state. Thus profiles based on costates
represent mutually exclusive measurements.

The threshold vectors that are the basis for determining
certified executions are established during normal system op-
eration. This is consistent with the general approach discussed
in [14], where execution sequences based on the specifications
were used to determine the Markov chain and the state
probabilities. However, in our case the Markov chain does
not need to be explicitly derived, since it is the static module
call graph that is generated automatically at compile time.

Figure 12 shows the profile related to 14 key modules out of
a total of 25 modules. All but module m23 behave consistent
in that their minimum, average, and maximum frequencies are
equal. Only m23, a module that filters Clarus data, experienced
variation. Further examination of the behavior of m23 over
time is shown in Figure 13, where the 52 operational epochs
of Figures 9 and 10 are used. The counts of invocations of
m23 is indicated, together with the minimum and maximum

counts that would typically be used as the basis for the
threshold function. However, m23 actually has two behaviors,
i.e., one for non-empty files with no sensor data and another
for standard file size. This causes the minimum and maximum
to drift, as they are monotonically non-increasing and non-
decreasing functions. As a result it is difficult to define
effective thresholds for detection of off-nominal executions.
This was solved by using a behavior set of size two, as shown
in Figure 14. One behavior threshold reflects the small file
size and another normal file size. The figure also identifies
four readings that are off-nominal, by far overreaching the
other readings. These files were abnormal data files of much
larger size and are treated as if they were data falsification
attempts.

E. Reliability Considerations
It is important to address how the addition of the real-

time weather control application affects the reliability of the
target application, i.e., the traffic control system. The reliability
of the traffic control system is not affected by the addition
of the embedded system since none of the components of
the original traffic signal control system are modified. The
embedded system implements only added value, but not basic
functionality. In fact, as mentioned before, the traffic controller
is NTCIP compliant. Thus action movie scenarios like an “all-
green intersections” or “split second yellow timing” causing
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Fig. 9. Adjustments of yellow period in % over winter months
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Fig. 10. Yellow adjustments during winter months related to weather conditions

D. Certified Executions for Resilient Operation

The third monitoring approach is check for off-nominal exe-
cutions. Due to the fact that costatements are non-preemptive,
the observed modular profiles of one costate is not affected
by executions of another costate. This however only holds in
the absence of parallelism. Due to the fact that the embedded
system has a single processor, there cannot be true parallelism
that could violate the assumptions that at any given time the
system is in only one state. Thus profiles based on costates
represent mutually exclusive measurements.

The threshold vectors that are the basis for determining
certified executions are established during normal system op-
eration. This is consistent with the general approach discussed
in [14], where execution sequences based on the specifications
were used to determine the Markov chain and the state
probabilities. However, in our case the Markov chain does
not need to be explicitly derived, since it is the static module
call graph that is generated automatically at compile time.

Figure 12 shows the profile related to 14 key modules out of
a total of 25 modules. All but module m23 behave consistent
in that their minimum, average, and maximum frequencies are
equal. Only m23, a module that filters Clarus data, experienced
variation. Further examination of the behavior of m23 over
time is shown in Figure 13, where the 52 operational epochs
of Figures 9 and 10 are used. The counts of invocations of
m23 is indicated, together with the minimum and maximum

counts that would typically be used as the basis for the
threshold function. However, m23 actually has two behaviors,
i.e., one for non-empty files with no sensor data and another
for standard file size. This causes the minimum and maximum
to drift, as they are monotonically non-increasing and non-
decreasing functions. As a result it is difficult to define
effective thresholds for detection of off-nominal executions.
This was solved by using a behavior set of size two, as shown
in Figure 14. One behavior threshold reflects the small file
size and another normal file size. The figure also identifies
four readings that are off-nominal, by far overreaching the
other readings. These files were abnormal data files of much
larger size and are treated as if they were data falsification
attempts.

E. Reliability Considerations
It is important to address how the addition of the real-

time weather control application affects the reliability of the
target application, i.e., the traffic control system. The reliability
of the traffic control system is not affected by the addition
of the embedded system since none of the components of
the original traffic signal control system are modified. The
embedded system implements only added value, but not basic
functionality. In fact, as mentioned before, the traffic controller
is NTCIP compliant. Thus action movie scenarios like an “all-
green intersections” or “split second yellow timing” causing
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Fig. 13. Profiles of module m23 with behavior set size equal to 1 over operational epochs.
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Fig. 14. Profiles of module m23 with behavior set size equal to 2 over operational epochs.
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Fig. 14. Profiles of module m23 with behavior set size equal to 2 over operational epochs.
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Fig. 14. Profiles of module m23 with behavior set size equal to 2 over operational epochs.

Current Status
Contingency Management Description:

A. Serageldin, A. Krings, and A. Abdel-Rahim,  “A Survivable Critical 
Infrastructure Control Application”, 8th Annual Cyber Security and 
Information Intelligence Research Workshop, Oct. 30 Sept. 2 2012, ORNL

Axel Krings, Ahmed Serageldin and Ahmed Abdel-Rahim, “A Prototype 
for a Real-Time Weather Responsive System”, in Proc. Intelligent 
Transportation Systems Conference, ITSC2012, Anchorage, Alaska, 16-19 
September, pp. 1465 - 1470, 2012.

Gaining Experience: prototype started running 24/7

Mature in setting thresholds.  

Dealing with realities of Internet access in Intersection
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Conclusions
Prototype has been running over 1 year

uses real-time weather data to modify traffic signal timing 
within safety standard

Utilization of Design for Survivability

Off-nominal executions detected (dual-bound thresholds)

Violation of dependencies detected

Contingency Management to Recover from anomalies
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