A Resilient Real-Time Traffic Control System: Software Behavior Monitoring and Adaptation

Axel Krings Ahmed Serageldin Ahmed Abdel-Rahim

This research was supported by grant DTFH61-10-P- 00123 from the Federal Highway Administration - US DoT

University of Idaho

Integrating Clarus data into RT-App.

Challenges

- The Engineering Challenge
- The Security Challenge
- The Real-time Challenge
- The Survivability Challenge (includes all "illities")
- Apply the newest technology to a survivability architecture
 - Design Methodology based on Design for Survivability

The big picture

The problem: Should we connect the control network to the Internet?

Δ

Clarus...

Utilizing local sensor data to do what?

5,515 20110906_1800.csv 20110906_1745.csv 5,515 20110906_1730.csv 5,515 20110906_1715.csv 5,515 20110906_1700.csv 5,515 20110906_1645.csv 5,515 20110906_1630.csv 5.515 20110906_1615.csv 5,515 20110906_1600.csv 5,515 20110906_1545.csv 5.515

Subscription: 2011082501

Subscription Information: DateCreated = 2011-08-25 Lat1 = not used Lon1 = not used Lat2 = not used Lon2 = not used PointRadiusLat = not used PointRadiusLon = not used PointRadiusRadius = not used ObsType = 0 (all) MinValue = -Infinity MaxValue = Infinity RunFlags = not applicable PassNotPass = not applicable Contributors = ID_State_TD StationIds = Shirrod

C Q- Google

5

Clarus Subscription Data

Access Clarus data files from the web

http://www.clarus-system.com/SubShowObs.jsp?subId=2011082501&file=20110906_2200.csv

 ▲ ▶
 + ∞ http://www.clarus-system.com/SubShowObs.jsp?subid=2011082501&file=20110906_2200.csv

 ↔ ○
 □
 ■
 Axel
 UI * Research * Finances * Misc.* Clarus * Conferences * Music * Kitty Hawk * MANET * TV * Find

Highly Critical (Essential) Clarus Data		
	essPrecipSituation	Describes the weather situation in terms of precipitation, integer values indicate situation
	essPrecipYesNo	Indicates whether or not moisture is detected by the sensor: (1) precip; (2) noPrecip; (3) error
	essPrecipRate	The rainfall, or water equivalent of snow, rate
	essRoadwaySnowpackDepth	The current depth of packed snow on the roadway surface
	essAirTemperature	The dry-bulb temperature; instantaneous
	essVisibilitySituation	integer value, describes the travel environment in terms of visibility
	essVisibility	Surface visibility (distance)
	essSurfaceStatus	integer value, a value indicating the pavement surface status

PROTOTYPE

What could possibly go wrong?

- What assumptions should one place on a system?
 - Anything is possible!
 - and it will happen!
 - Malicious act will occur sooner or later
 - It is hard or impossible to predict the behavior of an attack

University of Idaho

a

Unique Opportunity

- What is unique about this project?
 - The application domain is part of a Critical Infrastructure
 - The project is just small enough to demonstrate a survivability architecture
 - The code is relatively small
 - The execution is relatively deterministic
 - The run-time support is relatively mature

Design for Survivability

- When Systems become too complex
 - Design by Integration of Survivability mechanisms
 - Build-in not add-on
 - Design for Survivability has surfaced in different contexts

Design Methodology

Measurement-based design and operation

Our view of a System

- Different "machines"
 - Operations
 - Functions
 - Modules

Epoch

defined by transitions

University of Idaho

15

Formal Model of Sys. Arch.

Measurement-based design and operation

Profiling Model

University of Idaho

17

Profiles

- Frequency Spectrum (...and more)
 - count invocations
 - probability of invocation
 - defined for an epoch
 - defined for operations, functions and modules
 - does not say anything about dependencies!

Profiles

Module Profile

p = $< p_1, p_2, ..., p_{|M|} >$

where p_i is probability that m_i is executing

University of Idaho

19

Profiles

Observed Profile

 $\hat{\mathbf{p}} = (\hat{p}_1, \hat{p}_2, ..., \hat{p}_{|M|})$, where $\hat{p}_i = c_i/n$ is the fraction of system activity due to invocations of module m_i and c_i is the count of invocations of m_i .

 $\hat{\mathbf{p}}^k$ denotes the k^{th} observed module profile, observed over n epochs

Profiles and Certification

System behavior

- Analyze the observed profiles
- What is the threshold for "normal" behavior?
- How do we detect deviation from thresholds for "normal" executions?
- Set the threshold of "normal" to "certified"
 - Looks like anomaly detection in IDS, or?

University of Idaho

Profiles and Certification

- Interpretation of Certified Behavior
 - If profiles are beyond the certified threshold we simply have not seen such behavior before!
 - Could be benign or malicious reasons
- What is our response?
 - We could simply not allow the operation to continue and go to fail-safe state

Profile Vector & Scalar

Observe h sequences of n epochs

Define a centroid $\overline{\mathbf{p}} = (\overline{p}_1, \overline{p}_2, ..., \overline{p}_{|M|})$, where

$$\overline{p}_i = \frac{1}{h} \sum_{j=1}^h \hat{p}_i^j$$

and the distance of $\hat{\mathbf{p}}^k$ from centroid $\overline{\mathbf{p}}$ is given by

$$d_k = \sum_{i=1}^n (\overline{p}_i - \hat{p}_i^k)^2$$

24

Profiles considering costates

Definitions based on costate α :

 $\hat{\mathbf{p}}[\alpha], \, \hat{\mathbf{p}}^k[\alpha], \, \overline{\mathbf{p}}[\alpha] \text{ and } d_k[\alpha]$

Certified Behavior

The distance of the observed costate profiles $\hat{\mathbf{p}}^k[\alpha]$ from $\overline{\mathbf{p}}[\alpha]$ can be used so that departure beyond it indicates non-certified behavior of costate α . Two threshold vectors:

$$\epsilon^{max}[\alpha] = (\epsilon_1^{max}[\alpha], \dots, \epsilon_{|M|}^{max}[\alpha])$$
(3)

$$\epsilon^{min}[\alpha] = (\epsilon_1^{min}[\alpha], ..., \epsilon_{|M|}^{min}[\alpha])$$
(4)

where $\epsilon_i^{max}[\alpha]$ and $\epsilon_i^{max}[\alpha]$ are the upper and lower threshold values of m_i , representing a dual-bound threshold.

Certified Behavior

.

Every observed profile that is in the region between the two vectors is assumed nominal. Thus we certify a profile $\hat{\mathbf{p}}^k[\alpha]$ to be a *nominal profile* if

$$\epsilon^{min}[\alpha] \leq \mathbf{\hat{p}}^k[\alpha] \leq \epsilon^{max}[\alpha]$$

i.e., if $\epsilon_i^{min}[\alpha] \leq \hat{p}_i^k[\alpha] \leq \epsilon_i^{max}[\alpha]$ for every $1 \leq i \leq |M|$.

31

Synchronized Profiling

So fare we assumed that there is only one single behavior. However, there could be multiple.

Considering h sequences of n epochs each, we define a centroid of sets $\overline{\mathbf{P}} = (\overline{P}_1, \overline{P}_2, ..., \overline{P}_{|M|})$, where

$$\overline{P}_r = \overline{P}_r \cup p_i, \quad 1 \le r \le |M| \quad p_i = \frac{1}{h} \sum_{j=1}^h \hat{p}_i^j \tag{2}$$

for each behavior *i*. Thus $\overline{\mathbf{P}}$ is a |M|-dimensional structure of sets, and again using the above financial metaphor, each element represents the "*h*-day moving average" of a specific set of stocks (module), where a day is measured as *n* epochs, and again we want to track the past in order to establish "nominal", i.e., expected, behavior from a set of behaviors.

Dependency-based Model

University of Idaho

35

Inter-dependencies

Relationship between Operations, Functionalities, and Modules

Mappings in $(O \times F \times M)$

Intra-dependencies

Relationship within Operations, Functionalities, and Modules

 $\begin{aligned} \mathcal{G}^O &= (O, \prec^O) \\ \mathcal{G}^F &= (F, \prec^F) \\ \mathcal{G}^M &= (M, \prec^M) \end{aligned}$

University of Idaho

37

Intra-dependencies

In our current system we simplify to

- 8 Time synchronization
- 9 Support routines

Figure 3: Costates and Operations

39

Application Control

Sensor-based Model

Exception Triggers

- Exception trigger array
 - identify and profile exceptions, e.g., file does not exist, specific sensor data is not longer available.
 - any error condition can be viewed as an exception trigger

Data Sensors

- Observation of specific numeric values for analysis
- Example: the adjustment to the yellow timing
- What happens when someone changes to yellow time to zero? Is that possible?

Jniversity of Idaho

43

System Operation & Contingency Management

System Operations State Machine

Operations:

- 0 : Initialize Program
- 1 : Runtime Timing Module
- 2 : Get Weather Data
- 3 : Update Controller

Application Control Costatement

University of Idaho

Exception Triggers

Profiles of key modules and two nominal behaviors

Profiles of module m23 with behavior set size equal 1

University of Idaho

Current Status

Contingency Management Description:

A. Serageldin, A. Krings, and A. Abdel-Rahim, "A Survivable Critical Infrastructure Control Application", 8th Annual Cyber Security and Information Intelligence Research Workshop, Oct. 30 Sept. 2 2012, ORNL

Axel Krings, Ahmed Serageldin and Ahmed Abdel-Rahim, "A Prototype for a Real-Time Weather Responsive System", in Proc. Intelligent Transportation Systems Conference, ITSC2012, Anchorage, Alaska, 16-19 September, pp. 1465 - 1470, 2012.

- Gaining Experience: prototype started running 24/7
 - Mature in setting thresholds.
 - Dealing with realities of Internet access in Intersection

Conclusions

- Prototype has been running over 1 year
 - uses real-time weather data to modify traffic signal timing within safety standard
- Utilization of Design for Survivability
 - Off-nominal executions detected (dual-bound thresholds)
 - Violation of dependencies detected
 - Contingency Management to Recover from anomalies

55