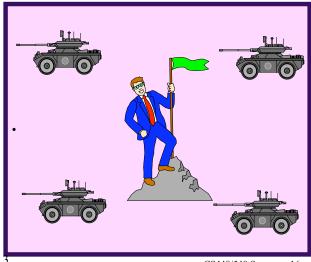
Discussion

- We will now look at a low level approach to survivability
- There are some definite potential problems
 - During the presentation, think maliciously and identify the weaknesses.

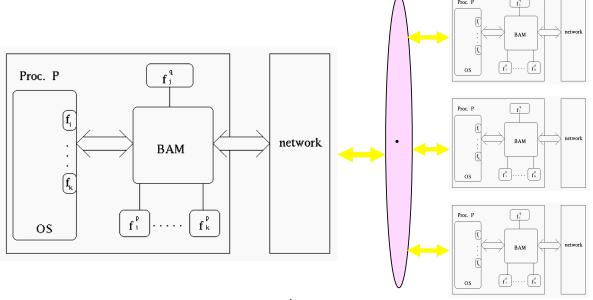

© 2008 A.W. Krings CS448/548 Sequence 16

Redundancy: A Curse or Blessing?

- Recall what we said about Redundancy:
- Recovery requirements imply Redundancy
- Three Types of Redundancy
 - Information Redundancy
 - » add information
 - e.g. error correction, authentication, codes
 - Time Redundancy
 - » repeat event in time
 - e.g. multiple sensor readings (of same sensor)
 - Spatial Redundancy
 - » physical redundancy, local or distributed
 - e.g. NMR, k-of-N

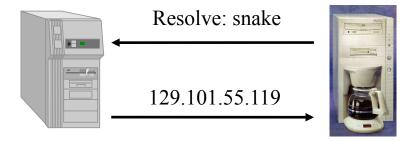
Putting it back together...

- How does one combine results from redundant operations?
- Fault-Tolerant Agreement
 - From Majority Voting to Byzantine Agreement (started with Lamport paper)
 - Many flavors
 - » Network Topology
 - bus, ring
 - » Network Protocols
 - ATM, TCP/IP, multicast
 - » Communication Type
 - symmetric, asymmetric



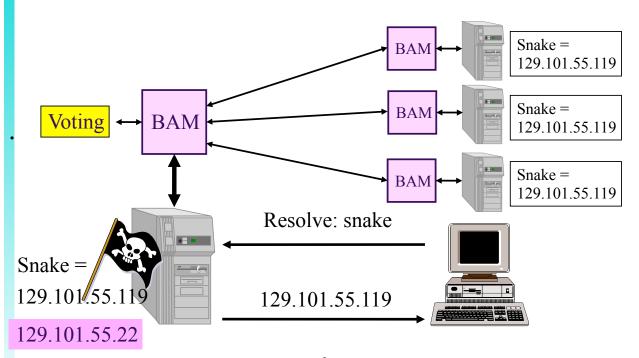
© 2008 A.W. Krings

CS448/548 Sequence 16


The BRANS Approach

- ◆ BAM = Byzantine Agreement Module
 - Survivability Cluster

An Example: DNS


- DNS (Domain Name Service)
 - Resolves addresses
 - » snake.cs.uidaho.edu = 129.101.55.119
 - » DNS server maintains database of mappings

© 2008 A.W. Krings 5 CS448/548 Sequence 16

An Example: DNS

Intruder changed DNS entry

Agreement Requirements

- Solutions with lowest overhead are applied, e.g.
 - » simple majority voting,
 - » Byzantine agreement with early stopping
 - » full Byzantine agreement.
- Individual critical functionalities use those solutions that minimally satisfy their agreement requirements.

Note:

in the previous example a simple majority suffices, however, if the DNS table needs to be updated, stronger agreement solutions are needed that require the 4 computers shown.

© 2008 A.W. Krings CS448/548 Sequence 16

Discussion

- Lets play "Devil's Advocate"

Systems under Attack

- How does one tell if a system is under attack?
 - IDSs?
 - How "real-time" should Real-Time be?
 - Decide on a "Level of Abstraction" to be considered.

© 2008 A.W. Krings 9 CS448/548 Sequence 16

Systems under Attack

- How can the Whittaker approach be modified to help attack recognition?
 - observing
 - » dependencies
 - » profiles
 - » timing behavior
 - **»**

Systems under Attack

- We will look at two examples, one is bottom-up and the other top-down.
 - The next discussion is based on the paper
 - "A Two-Layer Approach to Survivability of Networked Computing Systems", by Krings A.W, et.al., *International* Conference on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet, L'Aquila, Italy, Aug 06 -Aug 12, pp. 1-12, 2001.
- We will compare the basic approach with the concepts of the Whittaker paper.

© 2008 A.W. Krings 11 CS448/548 Sequence 16

Objective

- Achieve Survivability of Critical Functionalities
 - ultimate goal, holy grail (very general, very difficult)
- "Some Attacks can be dealt with at Lowest Level"
- Standard User Environment
- Implementing Survivability Mechanism
 - at the lowest level of abstraction
 - suitable for class of attacks with distinct signatures
 - survivability handlers & response agents

Assumptions

Anything is possible!
» and it will happen!

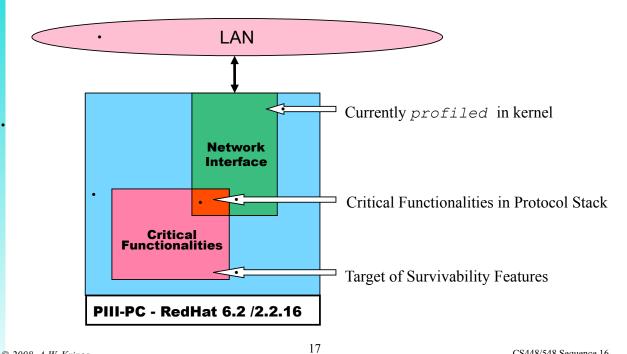
- Intrusions will occur sooner or later
- Mechanisms that empower can be used against you

© 2008 A.W. Krings 13 CS448/548 Sequence 16

Standard User Environment

- Target System
 - Typical desktop computer
 - Mostly operated by single individual
 - Standard applications
 - » browser, email, sftp, ssh, multi-media, text processor, etc.
- System Characteristics
 - Low utilization!
 - » linux top command
 - "Idle Profile" of system is surprisingly clean

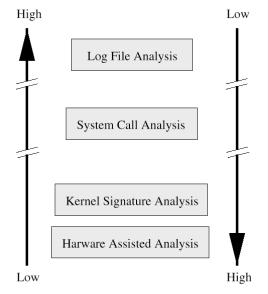
Off-line and On-line Survivability


- Off-line Design Process
 - clean system environment (off-line, no applications)
 - creation of attack signature database
 - attack signatures aid in identification of critical functions
 - implementation of reactionary mechanisms
 - » low level (kernel handlers)
 - » high level (migratory agents)
 - » a priori matching of critical functionalities with critical functions

© 2008 A.W. Krings 15 CS448/548 Sequence 16

Off-line and On-line Survivability

- On-line (real-time) Protective Capabilities
 - real-time attack recognition
 - at high level
 - » recognition triggers response agents
 - at kernel level
 - » survivability handlers get invoked (independent of attack recognition)


System Architecture

© 2008 A.W. Krings 17 CS448/548 Sequence 16

Levels of Abstraction

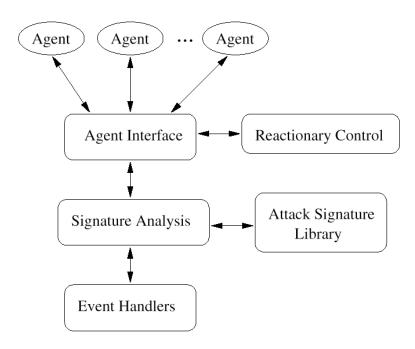
Real-time Potential

Level of Abstraction

Real-Time Potential

18 CS448/548 Sequence 16

Two Layers of the Architecture


Real-time

- Low-level Event Handlers
 - Survivability handlers
 - Currently used for kernel instrumentation
 - Case study: Early Stopping Agreement
- High-level Reactionary Control
 - Implements high-level survivability features
 - » e.g. filtering, patching, early warning
 - Migratory Autonomous Agent System
 - » Small specialized program to perform specific task
 - » Off the shelf technology, (Aglets)

© 2008 A.W. Krings CS448/548 Sequence 16

Survivability Architecture Overview

System Components

Profiles

 We view a system as a collection of profiles of its functionalities P_i

$$P_{sys}(\Delta t) = \sum_{i=1}^{k} P_i(\Delta t)$$

k is the number of functionalities active during Δt

Functionality Profile

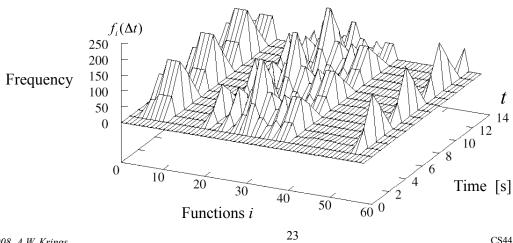
$$P_i(\Delta t) = (f_1(\Delta t), f_2(\Delta t), ..., f_n(\Delta t))$$

 $f_i(\Delta t)$ is the number of times identity F_i has been invoked during Δt

© 2008 A.W. Krings 21 CS448/548 Sequence 16

Attack Signatures

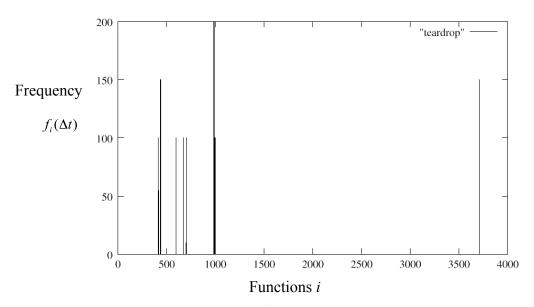
- Atomic Attacks A_i
 - the smallest attack technology unit
 - e.g. a port sweep, sequence of unsuccessful login attempts
- Attack Signature S_i
 - the portion of a profile that is attributable to A_i


$$S_i(\Delta t) = (f_{\alpha(1)}(\Delta t), f_{\alpha(2)}(\Delta t), \dots, f_{\alpha(s_i)}(\Delta t))$$

 α is a one-to-one mapping from indices of S_i to indices of the identities F_i profiled

 $f_i(\Delta t)$ is the number of times identity F_i has been called during Δt

Attack Signature


- Attack Signature over Time
 - Example: "teardrop" (overlapping IP(TCP) fragments are formatted to cause reassembly crashes)

© 2008 A.W. Krings CS448/548 Sequence 16

Attack Signature

Example "teardrop"

Real-Time Attack Recognition

- Vector Analysis
 - Profile $P_i(\Delta t)$, Idle Signature $S_0(\Delta t)$, and Attack Signature $S_i(\Delta t)$ are vectors
- "Strictly Speaking"
 - there are three possible scenarios

$$P_{sys}(\Delta t) \ge S_i(\Delta t)$$
 possible attack

$$P_{sys}(\Delta t) \neq S_i(\Delta t)$$
 attack not possible

$$P_{sys}(\Delta t) < S_i(\Delta t)$$
 attack not possible

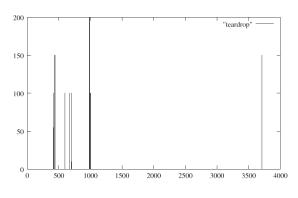
© 2008 A.W. Krings 25 CS448/548 Sequence 16

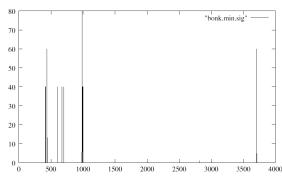
Signature Analysis

- Relationship between Signatures

$$\mathbf{S}_i \subseteq \mathbf{S}_j$$

- Common functions


$$\mathbf{S}_i \cap \mathbf{S}_j$$


- Signature Correlation

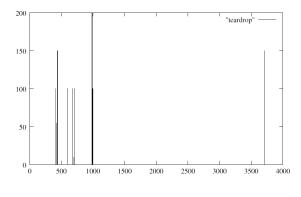
$$C(i, j) = \frac{\left|\mathbf{S}_{i} \cap \mathbf{S}_{j}\right|}{\min(\left|\mathbf{S}_{i}\right|, \left|\mathbf{S}_{j}\right|)}$$

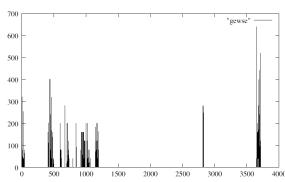
Attack Signature

- Example "teardrop" vs. "bonk"
 - bonk: malformed IP header causes packet size violation upon reassembly
 - Note: scales differ
 - Correlation is 1.0

teardrop attack

bonk attack

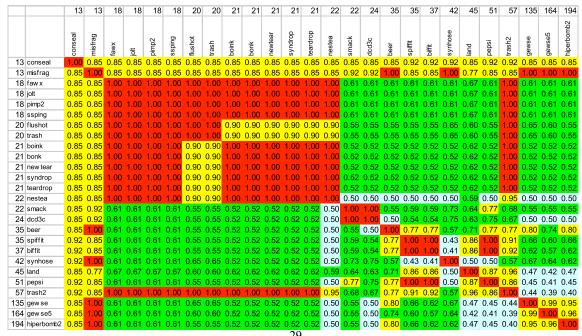

© 2008 A.W. Krings


27

CS448/548 Sequence 16

Attack Signature

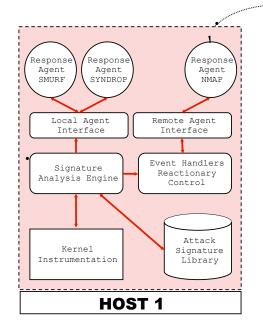
- Example "teardrop" vs. "gewse"
 - Gewse: (DoS attack) floods identd on port 139
 - Note: scales differ
 - Correlation is 0.54

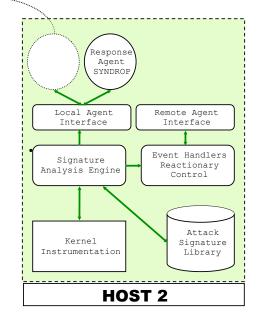


teardrop attack

gewse attack

Correlation


"Some things seem too good to be true"



© 2008 A.W. Krings 29 CS448/548 Sequence 16

Network Survivability Architecture

Migratory Agent Framework

Case Study "Smurf"

- "Smurf" Attack
 - DDoS (limited protection against such attack)
 - attacker:
 - » sends ICMP echo packets to generate multiple replies
 - » attacker claims to be victim
 - forges source address
 - » target of echo request is
 - all machines in broadcast subnet
 - "Amplifier network"
 - victim:
 - » all systems in amplifier network respond
 - » victim gets flooded with unwanted ICMP echo replies
- Response Agent
 - turns on filter in router

© 2008 A.W. Krings 31 CS448/548 Sequence 16

Conclusions

- Tow-layer approach to survivability
 - off-line and on-line component
- Low layer
 - Attack signatures aid in identification of critical functionalities
 - Survivability handlers applied at kernel level
 - Signature analysis triggers response mechanism at high level
 - » attack recognition does not facilitate a general IDS!
- High layer
 - Migratory Agent system
 - Response agents act as reactionary mechanisms