- This discussion is based on the paper:
 - [Whi93] Whittaker James A., and J.H. Poore, *Markov Analysis of Software Specifications*, ACM Transactions on Software Engineering and Methodology, Vol.2, No. I, January 1993, pp. 93-106.
 - We will discuss the paper for what it represents and later see how the approach can benefit us with respect to our "mission"
- The paper discusses Markov Chains as models for software usage
 - uses finite state discrete parameter Markov chain
 - states of the Markov chain represent entries from the input domain of the software
 - transitions (arcs) define ordering that determines the event space, or sequence, of the experiment

© A. Krings 2014

CS448/548 Sequence 13

- Markov analysis of software specifications
 - · define underlying probability law for the usage of the software under consideration
 - analysis of specification done prior to design and coding
 - analysis yields irreducible Markov chain (usage Markov chain)
 - unique start state S₀
 - unique final state S_F
 - set of intermediate usage states S_i
 - states set $S = \{S_0, S_F\}$ union S_i
 - set S is ordered by probabilistic transition relation

$(S \times [0,1] \times S)$

- next state is independent of all past states given the present states
 - Markov property (first order chain)

© A. Krings 2014

CS448/548 Sequence 13 **USAGE MODELS** Usage Markov chain has two properties Structural Phase the states and transitions of the chain are established Statistical Phase the transition probabilities are assigned Highest level transition diagram [Whi93, fig. 2] Invocation Usage **Termination** 4 CS448/548 Sequence 13 © A. Krings 2014

• Example: a simple window application [Whi93, fig3]

	Example Window	AV	
Move Close Size	(pull down menu)		
	5		Sequence I

USAGE MODELS

Stimulus	Response					
Invocation	Place the window of figure 3.2 on the screen					
Select 🔺	Expand the window dimensions to cover the entire area of the screen					
Select •	Remove the window and replace it with its corresponding icon					
Select • and choose <i>Move</i> from the pull down menu	Move the window as directed by the mouse input (obeying screen boundaries)					
Select - and choose <i>Stze</i> from the pull down menu	Size the window as directed by the mouse input (obeying minimum and maximum limits)					
Select • and choose <i>Close</i> from the pull down menu	Remove the window from the screen					
Select the 1con and release	Remove the icon from the screen and restore the window					

• Example Software Specification

© A. Krings 2014

[Whi93, table I]

• phase is complete when usage is completely modeled [Whi93, fig,5]

Statistical Phase

- assignment of transition probabilities
- different approaches to statistical phase

uninformed approach

- assign uniform probability distribution across the exit arcs for each state
- useful when no information is available to make more informed choice

© A. Krings 2014

CS448/548 Sequence 13

USAGE MODELS

9

- Statistical Phase
 - informed approach
 - when some actual user sequences are available
 - could be captured inputs from a prototype, or profiling information
 - resulting relative frequencies can be used to estimate the transition probability in the usage chain

Statistical Phase

- intended approach
 - similar to informed approach but...
 - sequences are obtained by hypothesizing runs of the software by a careful and reasonable user
 - relative frequency estimates of transition probabilities are computed from the symbol transition counts as in the informed approach

• How does one rank the approaches?

11

© A. Krings 2014

CS448/548 Sequence 13

	From-State	To-State	Frequency	Probability
	Invocation	Window	6	1
	Window	Maximize	1	1/12
	Window	Mınimize	1	1/12
	Window	Move	2	1/6
	Window	Size	2	1/6
	Window	Close	6	1/2
	Maximize	Window	1	1
	Mınimize	Icon	1	1
 Assigning 	Icon	Restore	1	1
	Restore	Window	1	1
transition	Move	Drag Mouse	2	1
probabilities	Size	Drag Mouse	2	1
	Drag Mouse	Window	4	4/15
	Drag Mouse	Up	1	1/15
	Drag Mouse	Down	5	1/3
	Drag Mouse	Left	3	1/5
	Drag Mouse	Right	2	2/15
[Whi93, table II]	Up	Drag Mouse	1	1
	Down	Drag Mouse	5	1
	Left	Drag Mouse	3	1
	Right	Drag Mouse	2	1
	Close	Termination	6	1
	Termination	Invocation	_	1

(putting it on one page)				
	From-State	To-State	Frequency	Probability
	Invocation	Window	6	1
	Window	Maximize	1	1/12
	Window	Mınimize	1	1/12
	Window	Move	2	1/6
1 < Invocation > Window > Maximize > Window > Close	Window	Size	2	1/6
<termination></termination>	Window	Close	6	1/2
2. <invocation> < Window > < Minimize > < Icon > < Restore > < Window ></invocation>	Maximize	Window	1	1
<close> < Termination ></close>	Mınimize	Icon	1	1
3. <invocation><window><move><drag mouse=""><down><drag-< td=""><td>Icon</td><td>Restore</td><td>1</td><td>1</td></drag-<></down></drag></move></window></invocation>	Icon	Restore	1	1
Mouse> <right><drag mouse=""><down><drag mouse=""><window></window></drag></down></drag></right>	Restore	Window	1	1
<close><termination></termination></close>	Move	Drag Mouse	2	1
4. <invocation><window><size><drag mouse=""><left><drag-< td=""><td>Size</td><td>Drag Mouse</td><td>2</td><td>1</td></drag-<></left></drag></size></window></invocation>	Size	Drag Mouse	2	1
Mouse> <up><drag mouse=""><left><drag mouse=""><window></window></drag></left></drag></up>	Drag Mouse	Window	4	4/15
<close><termination></termination></close>	Drag Mouse	Up	1	1/15
5. <invocation><window><move><drag mouse=""><down><drag-< td=""><td>Drag Mouse</td><td>Down</td><td>5</td><td>1/3</td></drag-<></down></drag></move></window></invocation>	Drag Mouse	Down	5	1/3
Mouse> <left><drag mouse=""><down><drag mouse=""><window></window></drag></down></drag></left>	Drag Mouse	Left	3	1/5
<close><termination></termination></close>	Drag Mouse	Right	2	2/15
6. <invocation><window><size><drag mouse=""><down><drag-< td=""><td>Up</td><td>Drag Mouse</td><td>1</td><td>1</td></drag-<></down></drag></size></window></invocation>	Up	Drag Mouse	1	1
Mouse> <right><drag mouse=""><window><close><termination></termination></close></window></drag></right>	Down	Drag Mouse	5	1
	Left	Drag Mouse	3	1
	Right	Drag Mouse	2	1
	Close	Termination	6	1
	Termination	Invocation	-	1

- Test Cases
 - Statistical Test Case
 - any connected state sequence of the usage chain begins in the start state and ends in the termination state
- Usage Distribution π
 - the structure of the usage chain induces a probability distribution on the input domain of the software
 - this distribution is called usage distribution
 - each state S_i has steady-state probability π_i
 - i.e., the probability of being in state *i* is π_i

© A. Krings 2014

15

CS448/548 Sequence 13

USAGE MODELS

Usage Distribution π

- usage distribution can be computed by $\pi = \pi P$
- *P* is the transition matrix of the usage chain
 - *P* can be encoded as a 2-D matrix (*P* is a square matrix)
 - state labels are indices and transition probabilities are entries
 - each row sums up to one
 - each entry π_i is the expected appearance rate of state S_i in the long run
 - this tells software testers where the user spends most of its time
 - perhaps focus attention on these parts
 - there is a danger to this though, the bug may be in the less used functions
 - states can be grouped (allows comparison of subsections of software)
 - usage distributions are just summed up
 - collapsing states in a Markov chain may require adjustments to transitions

- Other useful statistics
- Number of states necessary until S_i is expected to be generated, denoted by x_i, is computed by

$$x_i \pi_i = 1 \implies x_i = \frac{1}{\pi_i}$$

• if S_i is the termination state, then x_i is the expected number of states until termination of the software

© A. Krings 2014

17

CS448/548 Sequence 13

USAGE MODELS

Expected number of sequences s_i necessary until state i occurs

$$s_i = \frac{x_i}{x_{TERM}} = \frac{\pi_{TERM}}{\pi_i}$$

- largest element of vector s identifies the amount of expected testing until all usage states are encountered at least once
- note:TERM indicates termination state

State	п	x	S	
Invocation	0 093750	10 7	1	
Window	0.187500	53	0.5	
Muximize	0 015625	64	6	
Minimize	0 015625	64	6	
Icon	0.015625	64	6	
Restore	0.015625	64	6 3 3	
Move	0 031250	32		
Size	0.031250	32		
Drag Mouse	0 234375	4.3	0.4	
Up	0 015635	64	6	
Down	0.078125	12 8	1.2	
Left	0 046875	21.3	2	
Rıght	0 031250	32	3	
Close	0 093759	10.7	1	
Termination	0 093750	10 7	1	

[Whi93, table III]

 Analytical result example usage

© A. Krings 2014

40/340 sequence

USAGE MODELS

Mean first passage times m_{ik}

• m_{ik} is the expected number of usage states visited starting from S_i until the first visit to Sk

$$m_{jk} = 1 + \sum_{i \neq k} p_{ji} m_{ik}$$

- p_{ii} indicate the transition probabilities
- indicates the extent to which S_i and S_k are encountered within the same sequence
- e.g. if $m_{\rm ik}$ is greater than the expected test case length, then
 - occurrence of S_j followed by S_k is expected to require multiple sequences
- note: in figure of next slide the diagonal is vector x

© A. Krings 2014

20

		ι		5A	G	E	Μ	0	D	EL	S					
		theory.	Wind	A.	All	tcon to	As a construction of the c	Move	Size	Drage Mr.	Up we	Down	ter	Right	Close	Term
	Invocation	11	1	64	62	63	64	26	26	11	7 4	22	31	42	9	10
	Window	10	5	63	61	62	63	25	25	10	73	21	30	41	8	9
	Maximize	11	1	64	62	63	64	26	26	11	74	22	31	42	9	10
	Minimize	13	3	66	64	1	2	28	28	13	76	24	33	44	11	12
	Icon	12	2	65	63	64	1	27	27	12	75	23	32	43	10	11
Mean f	Restore	11	1	64	62	63	64	26	26	11	74	22	31	42	9	10
I ICall I	Move	17	8	71	69	70	71	32	32	1	64	13	21	32	15	16
	Size	17	8	7 1	69	70	71	32	32	1	64	13	21	32	15	16
	Drag Mouse	16	7	70	68	69	70	31	31	4	63	12	20	31	14	15
	Up	17	8	71	69	70	71	32	32	1	64	13	21	32	15	16
	Down	17	8	71	69	70	71	32	3 2	1	64	13	21	32	15	16
	Left	17	8	71	69	7 0	71	32	32	1	64	13	21	32	15	16
	Kigni	17	8	71	69	70	71	32	32	1	64	13	21	32	15	16
	Close	2	3	66	64	65	66	28	28	13	76	24	33	44	11	1
	Termination	1	2	65	63	64	65	27	27	12	75	23	32	43	10	11
hi93, fig.6]	The mean fi	irst p	assaį	ge ma	ıtrix f	òr the	exar	nple ı	isage	mode	el (ent	ries a	re rou	unded)).	
100000							21						CCA	10/5	10 C	o qui

- Source entropy of usage chain
 - the source entropy quantifies the uncertainty in a stochastic source
 - the entropy of a random variable f is the expected "surprise" of the event that f(x)=y

$$H = -\sum_{i} \pi_{i} \sum_{j} p_{ij} \log p_{ij}$$

- again π is the usage distribution and $p_{
 m ij}$ is the transition probability
- H is exponentially related to the number of sequences that are ''statistically typical'' of the Markov chain
 - a Markov chain has a set of typical sequences whose ensemble statistics closely match the statistics of the chain

© A. Krings 2014

CS448/548 Sequence 13

- Source entropy of usage chain
 - high H
 - => exponentially greater number of typical sequences
 - more sequences exist because of the uncertainty present in the model
 - => Markov chain must generate more sequences in order to accurately describe the Markov source

© A. Krings 2014

23

CS448/548 Sequence 13

USAGE MODELS

- Source entropy of usage chain
 - source entropy serves as a comparative measure for chains with same structure but different probabilities
 - example: two chains U_1 and U_2 (chains are structurally the same)
 - transition probabilities of U_1 are *uninformed*
 - transition probabilities of U₂ are *informed*
 - Let H_1 and H_2 be the source entropies for U_1 and U_2 respectively
 - If $H_1 > H_2$ then one should expect exponentially greater number of sequences using U_1 than U_2
 - U_1 could serve as frame of reference
 - in previous example $H_1 = 1.0884$ and $H_2 = 0.8711$

- Conclusions
 - Usage chains are a good tool trying to answer the question "What is the user likely to do when using the software?"

or

"What is the software to be able of doing?"

- The paper was written to aid testing of software, not with survivability in mind
- We need to determine how usage models can be used to benefit our "survivability" cause, e.g.,
 - How can we use usage models to define normal usage of the system?
 - How can we reverse-engineer usage patterns?

How can an attacker take advantage of usage models?
 © A. Krings 2014
 ²⁵
 CS448/548 Sequence 13