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Markov Process

 A stochastic process is a function whose values are random 
variables 

 The classification of a random process depends on different 
quantities

– state space
– index (time) parameter
– statistical dependencies among the random variables X(t) for different 

values of the index parameter t.
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Markov Process

 State Space
– the set of possible values (states) that X(t) might take on.
– if there are finite states => discrete-state process or chain
– if there is a continuous interval => continuous process

 Index (Time) Parameter
– if the times at which changes may take place are finite or countable, 

then we say we have a discrete-(time) parameter process.
– if the changes may occur anywhere within a finite or infinite interval 

on the time axis, then we say we have a continuous-parameter 
process.
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Markov Process

 In 1907 A.A. Markov published a paper in which he defined 
and investigated the properties of what are now known as 
Markov processes.

 A Markov process with a discrete state space is referred to as 
a Markov Chain

 A set of random variables forms a Markov chain if the 
probability that the next state is S(n+1) depends only on the 
current state S(n), and not on any previous states
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Markov Process

 States must be 
– mutually exclusive
– collectively exhaustive

 Let Pi(t) = Probability of being in state Si at time t.
 

 Markov Properties
– future state prob. depends only on current state

» independent of time in state
» path to state
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Markov Process

 Assume exponential failure law with failure rate λ.
 Probability that system failed at t + Δt, given that is was 

working at time t is given by

with

we get
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Markov Process

 For small Δt 

1 0
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Markov Process

 Let P(transition out of state i in Δt) = 

 Mean time to transition (exponential holding times) 

 If λ’s are not functions of time, i.e. if    
– homogeneous Markov Chain
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Markov Process

 Accessibility
– state Si is accessible from state Sj if there is a sequence of transitions 

from Sj to Si.

 Recurrent State
– state Si is called recurrent, if Si can be returned to from any state 

which is accessible from Si  in one step, i.e. from all immediate 
neighbor states.

 Non Recurrent
– if there exists at least one neighbor with no return path.
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Markov Process

 sample chain

Which states
are recurrent
or non-recurrent?
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Markov Process

 Classes of States
– set of states (recurrent) s.t. any state in the class is reachable from any 

other state in the class.
– note: 2 classes must be disjoint, since a common state would imply 

that states from both classes are accessible to each other.
 Absorbing State

– a state Si is absorbing iff
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Markov Process

 Irreducible Markov Chain
– a Markov chain is called irreducible, if the entire system 

is one class
» => there is no absorbing state
» => there is no absorbing subgraph, i.e. there is no absorbing 

subset of states
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Deriving Equations

  

(differentiate)

as Δt→ 0
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Deriving Equations

 With m states => m differential equations
 m-1 independent equations

 mth equation
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Deriving Equations

 Matrix Notation
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Steady State Solutions
 Steady state solution:

 Steady state solution = Availability
– set of linear alg. equations rather than linear differential equations

lim
( )

t

jdP t
dt→∞

= 0
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Steady State Solution

 Example: Simplex system with repair

λ  = failure rate

 µ = repair rate
1 0

λ

µ
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Steady State Solution

 Simplex with Repair
 Solution:

 Steady State Availability

 e.g. 

Availability:
The prob. that
system is up

λ
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Transient Solution

 Simplex with Repair

                                            is a first order diff. equation

with                                we get

λ

1 0µ
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Transient Solution

                                            has general solution

 Get C by setting t=0

 Solution
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Transient Solution

 with                   we get 

our steady state solution
(steady state availability)
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