
BASIC CONCEPTS AND TAXONOMY OF
DEPENDABLE AND SECURE

COMPUTING
by Algirdas Avizienis, Jean-Claude Laprie, Brian

Randell, and Carl Landwehr,
IEEE TRANSACTIONS ON DEPENDABLE AND

SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-
MARCH 2004

1

CS448/548 Sequence 8© A. Krings 2014 2

• We have discussed the basic issues of dependable
systems before.

• Now we will focus more on survivability-related
issues of the aforementioned paper

• Most of the material is directly taken from the
paper and (to avoid visual clutter) will not be
explicitly cited!

BASICS

CS448/548 Sequence 8© A. Krings 2014

• System
• entity that interacts with other entities

• includes hardware, software, humans, physical world with its
natural phenomena

• system boundary

• function is what it should do, often is described by functional
specification in terms of functionality and performance

• behavior is what system does to implement its functions
• behavior is described by sequence of states

2) BASIC CONCEPTS

3

CS448/548 Sequence 8© A. Krings 2014

•Total State of a System defined by
following:
•computation
•communication
•stored information
• interconnection
•physical condition

2) BASIC CONCEPTS

4

CS448/548 Sequence 8© A. Krings 2014

• Structure of a system

•set of components that interact
•each component is another system

•recursive definition
•stops with atomic component

• i.e., no need or not possible to further
break down

2) BASIC CONCEPTS

5

CS448/548 Sequence 8© A. Krings 2014

• Service delivered by a system
• in its role as provider
• user is another system receiving service
from the provider

• service interface is the boundary where
service delivery takes place

• user sees external state of provider ;
remaining part is internal state

• user receives service at use interface

2) BASIC CONCEPTS

6

CS448/548 Sequence 8© A. Krings 2014

•Threats to Dependability and Security
• Service failure, or just failure

• delivered service deviates from correct
service

• transition from correct to incorrect
service

2) BASIC CONCEPTS

7

CS448/548 Sequence 8© A. Krings 2014

•Threats to Dependability and Security
• Service outage

• period of delivery of incorrect service
• Service restoration

•transition from incorrect to correct
service

•deviation from correct service may assume
different forms: service failure modes

2) BASIC CONCEPTS

8

CS448/548 Sequence 8© A. Krings 2014

•Failure, error, fault
•Service is sequence of system’s external
states

•Service failure means ∃ at least one
external state of the system that deviates
from the correct service state

•That deviation is called an error

•The cause of the error is called fault

2) BASIC CONCEPTS

9

CS448/548 Sequence 8© A. Krings 2014

•Faults
• internal fault or external
• vulnerability, i.e., an internal fault that
enables an external fault to harm the
system, is necessary for an external fault to
cause an error and possibly subsequent
failure

2) BASIC CONCEPTS

10

CS448/548 Sequence 8© A. Krings 2014

• typically: fault causes error, which can
cause failure

• fault is active when it causes an error
•otherwise it is dormant

2) BASIC CONCEPTS

11

CS448/548 Sequence 8© A. Krings 2014

• If functional specification of a system includes a
set of several functions, then
• failure of one or more services that
implement the function may leave system in
a degraded mode
•still offers subset of needed services
•e.g., slower, limited service, emergency
service

•system is said to have suffered partial
failure

2) BASIC CONCEPTS

12

CS448/548 Sequence 8© A. Krings 2014

•Dependability Security and their Attributes
•original definition of dependability

•“ability to deliver service that can
justifiably be trusted”

•alternate definition
•“ability to avoid service failures that are
more frequent and more severe than is
acceptable”

2) BASIC CONCEPTS

13

CS448/548 Sequence 8© A. Krings 2014

•Trust
•dependence of system A on system B
represents the extend to which system A’s
dependability is affected by that of system
B

•concept of dependence leads to that of
trust,
• trust = accepted dependence

2) BASIC CONCEPTS

14

CS448/548 Sequence 8© A. Krings 2014

• Dependability encompasses the following attributes
• availability: readiness for correct service.
• reliability: continuity of correct service.
• safety: absence of catastrophic consequences on

the user(s) and the environment.
• integrity: absence of improper system

alterations.
• maintainability: ability to undergo modifications  

and repairs.

2) BASIC CONCEPTS

15

CS448/548 Sequence 8© A. Krings 2014

•when addressing security we add
• confidentiality, the absence of
unauthorized disclosure of information

• Security is composite of the attributes
• confidentiality
• integrity
• availability

2) BASIC CONCEPTS

16

CS448/548 Sequence 8© A. Krings 2014

•Dependability and security attributes
2) BASIC CONCEPTS

17

. Fault prevention means to prevent the occurrence or
introduction of faults.

. Fault tolerancemeans to avoid service failures in the
presence of faults.

. Fault removal means to reduce the number and
severity of faults.

. Fault forecasting means to estimate the present
number, the future incidence, and the likely con-
sequences of faults.

Fault prevention and fault tolerance aim to provide the
ability to deliver a service that can be trusted, while fault
removal and fault forecasting aim to reach confidence in
that ability by justifying that the functional and the
dependability and security specifications are adequate and
that the system is likely to meet them.

2.5 Summary: The Dependability and Security Tree

The schema of the complete taxonomy of dependable and
secure computing asoutlined in this section is shown inFig. 2.

3 THE THREATS TO DEPENDABILITY AND SECURITY

3.1 System Life Cycle: Phases and Environments
In this section, we present the taxonomy of threats that may
affect a system during its entire life. The life cycle of a
system consists of two phases: development and use.

The development phase includes all activities from
presentation of the user’s initial concept to the decision that
the system has passed all acceptance tests and is ready to
deliver service in its user’s environment. During the
development phase, the system interacts with the develop-
ment environment and development faultsmay be introduced
into the system by the environment. The development
environment of a system consists of the following elements:

1. the physical world with its natural phenomena,
2. human developers, some possibly lacking competence

or having malicious objectives,
3. development tools: software and hardware used by the

developers to assist them in the development
process,

4. production and test facilities.

The use phase of a system’s life begins when the system
is accepted for use and starts the delivery of its services to
the users. Use consists of alternating periods of correct
service delivery (to be called service delivery), service
outage, and service shutdown. A service outage is caused by
a service failure. It is the period when incorrect service
(including no service at all) is delivered at the service
interface. A service shutdown is an intentional halt of
service by an authorized entity. Maintenance actions may
take place during all three periods of the use phase.

During the use phase, the system interacts with its use
environment and may be adversely affected by faults
originating in it. The use environment consists of the
following elements:

1. the physical world with its natural phenomena;
2. administrators (including maintainers): entities (hu-

mans or other systems) that have the authority to
manage, modify, repair and use the system; some
authorized humans may lack competence or have
malicious objectives;

3. users: entities (humans or other systems) that receive
service from the system at their use interfaces;

4. providers: entities (humans or other systems) that
deliver services to the system at its use interfaces;

5. the infrastructure: entities that provide specialized
services to the system, such as information sources
(e.g., time, GPS, etc.), communication links, power
sources, cooling airflow, etc.

6. intruders: malicious entities (humans and other
systems) that attempt to exceed any authority they
might have and alter service or halt it, alter the
system’s functionality or performance, or to access
confidential information. Examples include hackers,
vandals, corrupt insiders, agents of hostile govern-
ments or organizations, and malicious software.

As used here, the term maintenance, following common
usage, includes not only repairs, but also all modifications
of the system that take place during the use phase of system
life. Therefore, maintenance is a development process, and
the preceding discussion of development applies to main-
tenance as well. The various forms of maintenance are
summarized in Fig. 3.

It is noteworthy that repair and fault tolerance are
related concepts; the distinction between fault tolerance and
maintenance in this paper is that maintenance involves the
participation of an external agent, e.g., a repairman, test
equipment, remote reloading of software. Furthermore,
repair is part of fault removal (during the use phase), and
fault forecasting usually considers repair situations. In fact,
repair can be seen as a fault tolerance activity within a
larger system that includes the system being repaired and
the people and other systems that perform such repairs.

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 1. Dependability and security attributes.

Fig. 2. The dependability and security tree.

CS448/548 Sequence 8© A. Krings 2014

•Dependability and security tree
2) BASIC CONCEPTS

18

. Fault prevention means to prevent the occurrence or
introduction of faults.

. Fault tolerancemeans to avoid service failures in the
presence of faults.

. Fault removal means to reduce the number and
severity of faults.

. Fault forecasting means to estimate the present
number, the future incidence, and the likely con-
sequences of faults.

Fault prevention and fault tolerance aim to provide the
ability to deliver a service that can be trusted, while fault
removal and fault forecasting aim to reach confidence in
that ability by justifying that the functional and the
dependability and security specifications are adequate and
that the system is likely to meet them.

2.5 Summary: The Dependability and Security Tree

The schema of the complete taxonomy of dependable and
secure computing asoutlined in this section is shown inFig. 2.

3 THE THREATS TO DEPENDABILITY AND SECURITY

3.1 System Life Cycle: Phases and Environments
In this section, we present the taxonomy of threats that may
affect a system during its entire life. The life cycle of a
system consists of two phases: development and use.

The development phase includes all activities from
presentation of the user’s initial concept to the decision that
the system has passed all acceptance tests and is ready to
deliver service in its user’s environment. During the
development phase, the system interacts with the develop-
ment environment and development faultsmay be introduced
into the system by the environment. The development
environment of a system consists of the following elements:

1. the physical world with its natural phenomena,
2. human developers, some possibly lacking competence

or having malicious objectives,
3. development tools: software and hardware used by the

developers to assist them in the development
process,

4. production and test facilities.

The use phase of a system’s life begins when the system
is accepted for use and starts the delivery of its services to
the users. Use consists of alternating periods of correct
service delivery (to be called service delivery), service
outage, and service shutdown. A service outage is caused by
a service failure. It is the period when incorrect service
(including no service at all) is delivered at the service
interface. A service shutdown is an intentional halt of
service by an authorized entity. Maintenance actions may
take place during all three periods of the use phase.

During the use phase, the system interacts with its use
environment and may be adversely affected by faults
originating in it. The use environment consists of the
following elements:

1. the physical world with its natural phenomena;
2. administrators (including maintainers): entities (hu-

mans or other systems) that have the authority to
manage, modify, repair and use the system; some
authorized humans may lack competence or have
malicious objectives;

3. users: entities (humans or other systems) that receive
service from the system at their use interfaces;

4. providers: entities (humans or other systems) that
deliver services to the system at its use interfaces;

5. the infrastructure: entities that provide specialized
services to the system, such as information sources
(e.g., time, GPS, etc.), communication links, power
sources, cooling airflow, etc.

6. intruders: malicious entities (humans and other
systems) that attempt to exceed any authority they
might have and alter service or halt it, alter the
system’s functionality or performance, or to access
confidential information. Examples include hackers,
vandals, corrupt insiders, agents of hostile govern-
ments or organizations, and malicious software.

As used here, the term maintenance, following common
usage, includes not only repairs, but also all modifications
of the system that take place during the use phase of system
life. Therefore, maintenance is a development process, and
the preceding discussion of development applies to main-
tenance as well. The various forms of maintenance are
summarized in Fig. 3.

It is noteworthy that repair and fault tolerance are
related concepts; the distinction between fault tolerance and
maintenance in this paper is that maintenance involves the
participation of an external agent, e.g., a repairman, test
equipment, remote reloading of software. Furthermore,
repair is part of fault removal (during the use phase), and
fault forecasting usually considers repair situations. In fact,
repair can be seen as a fault tolerance activity within a
larger system that includes the system being repaired and
the people and other systems that perform such repairs.

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 1. Dependability and security attributes.

Fig. 2. The dependability and security tree.

CS448/548 Sequence 8© A. Krings 2014

• Means to attain dependability and security:
• Fault prevention: prevent the occurrence or

introduction of faults.
• Fault tolerance: avoid service failures in the

presence of faults.
• Fault removal: reduce the number and

severity of faults.
• Fault forecasting: estimate the present

number, the future incidence, and the likely con-
sequences of faults.

2) BASIC CONCEPTS

19

CS448/548 Sequence 8© A. Krings 2014

• 3.1: System Life Cycle: Phases and Environment

• Development phase: all activities from initial concept to green light

• Development Environment of system consists of

• physical world with its natural phenomena

• human developers (+lacking competence, malicious
objective)

• development tools: software and hardware

• production and test facilities

3) THREATS TO DEPENDABILITY AND SECURITY

20

CS448/548 Sequence 8© A. Krings 2014

• Use phase
• System is accepted for use and starts delivering

services.
• Alternating periods of:

Service delivery
Service outage
Service shutdown

• Maintenance may take place during all three
periods of use phase

3) THREATS TO DEPENDABILITY AND SECURITY

21

CS448/548 Sequence 8© A. Krings 2014

• Physical world: with its natural phenomena

• Administrators (includes maintainers): have
authority to manage, modify, repair and use
system. Some authorized humans may lack
competence of have malicious objectives

USE ENVIRONMENT ELEMENTS:

22

CS448/548 Sequence 8© A. Krings 2014

• Users: humans or other system that receive
services

• Providers: humans or other systems that
deliver services

• Infrastructure: entities that provide services to
the system, e.g., information sources (time, GPS)
communications equipment/links, power, cooling
etc.

USE ENVIRONMENT ELEMENTS:

23

CS448/548 Sequence 8© A. Krings 2014

• Intruders: malicious entities (human or other systems)
• attempt to exceed authority they have
• alter services
• halt them
• alter system’s functionality or performance
• access confidential information
• examples: hackers, vandals, corrupt insiders,

governments, malicious software

USE ENVIRONMENT ELEMENTS:

24

CS448/548 Sequence 8© A. Krings 2014
3.2 Faults

3.2.1 A Taxonomy of Faults

All faults that may affect a system during its life are

classified according to eight basic viewpoints, leading to the

elementary fault classes, as shown in Fig. 4.
If all combinations of the eight elementary fault classes

were possible, there would be 256 different combined fault
classes. However, not all criteria are applicable to all fault
classes; for example, natural faults cannot be classified by
objective, intent, and capability. We have identified 31 likely
combinations; they are shown in Fig. 5.

More combinations may be identified in the future. The
combined fault classes of Fig. 5 are shown to belong to three
major partially overlapping groupings:

. development faults that include all fault classes
occurring during development,

. physical faults that include all fault classes that
affect hardware,

. interaction faults that include all external faults.

The boxes at the bottom of Fig. 5a identify the names of
some illustrative fault classes.

Knowledge of all possible fault classes allows the user to
decide which classes should be included in a dependability
and security specification. Next, we comment on the fault
classes that are shown in Fig. 5. Fault numbers (1 to 31) will
be used to relate the discussion to Fig. 5.

3.2.2 On Natural Faults
Natural faults (11-15) are physical (hardware) faults that are
caused by natural phenomena without human participation.
We note that humans also can cause physical faults (6-10,
16-23); these are discussed below. Production defects (11) are
natural faults that originate during development. During
operation the natural faults are either internal (12-13), due to
natural processes that cause physical deterioration, or
external (14-15), due to natural processes that originate
outside the system boundaries and cause physical inter-
ference by penetrating the hardware boundary of the system
(radiation, etc.) or by entering via use interfaces (power
transients, noisy input lines, etc.).

3.2.3 On Human-Made Faults
Thedefinition of human-made faults (that result fromhuman
actions) includes absence of actions when actions should be
performed, i.e., omission faults, or simply omissions.
Performing wrong actions leads to commission faults.

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 15

Fig. 3. The various forms of maintenance.

Fig. 4. The elementary fault classes.

MAINTENANCE

25

CS448/548 Sequence 8© A. Krings 2014

3.2 Faults

3.2.1 A Taxonomy of Faults

All faults that may affect a system during its life are

classified according to eight basic viewpoints, leading to the

elementary fault classes, as shown in Fig. 4.
If all combinations of the eight elementary fault classes

were possible, there would be 256 different combined fault
classes. However, not all criteria are applicable to all fault
classes; for example, natural faults cannot be classified by
objective, intent, and capability. We have identified 31 likely
combinations; they are shown in Fig. 5.

More combinations may be identified in the future. The
combined fault classes of Fig. 5 are shown to belong to three
major partially overlapping groupings:

. development faults that include all fault classes
occurring during development,

. physical faults that include all fault classes that
affect hardware,

. interaction faults that include all external faults.

The boxes at the bottom of Fig. 5a identify the names of
some illustrative fault classes.

Knowledge of all possible fault classes allows the user to
decide which classes should be included in a dependability
and security specification. Next, we comment on the fault
classes that are shown in Fig. 5. Fault numbers (1 to 31) will
be used to relate the discussion to Fig. 5.

3.2.2 On Natural Faults
Natural faults (11-15) are physical (hardware) faults that are
caused by natural phenomena without human participation.
We note that humans also can cause physical faults (6-10,
16-23); these are discussed below. Production defects (11) are
natural faults that originate during development. During
operation the natural faults are either internal (12-13), due to
natural processes that cause physical deterioration, or
external (14-15), due to natural processes that originate
outside the system boundaries and cause physical inter-
ference by penetrating the hardware boundary of the system
(radiation, etc.) or by entering via use interfaces (power
transients, noisy input lines, etc.).

3.2.3 On Human-Made Faults
Thedefinition of human-made faults (that result fromhuman
actions) includes absence of actions when actions should be
performed, i.e., omission faults, or simply omissions.
Performing wrong actions leads to commission faults.

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 15

Fig. 3. The various forms of maintenance.

Fig. 4. The elementary fault classes.

FAULTS:
OVERVIEW

FIG:4
ELEMENTARY
FAULT
CLASSES

26

CS448/548 Sequence 8© A. Krings 2014 27

The two basic classes of human-made faults are distin-

guished by the objective of the developer or of the humans

interacting with the system during its use:

. Malicious faults, introduced during either system
development with the objective to cause harm to the
system during its use (5-6), or directly during use
(22-25).

. Nonmalicious faults (1-4, 7-21, 26-31), introduced
without malicious objectives.

We consider nonmalicious faults first. They can be

partitioned according to the developer’s intent:

. nondeliberate faults that are due to mistakes, that is,
unintended actions of which the developer, operator,
maintainer, etc. is not aware (1, 2, 7, 8, 16-18, 26-28);

. deliberate faults that are due to bad decisions, that is,
intended actions that are wrong and cause faults (3, 4,
9, 10, 19-21, 29-31).

Deliberate, nonmalicious, development faults (3, 4, 9, 10)
result generally from trade offs, either 1) aimed at
preserving acceptable performance, at facilitating system
utilization, or 2) induced by economic considerations.
Deliberate, nonmalicious interaction faults (19-21, 29-31)
may result from the action of an operator either aimed at
overcoming an unforeseen situation, or deliberately violat-

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 5. The classes of combined faults (a) Matrix representation. (b) Tree representation.
CS448/548 Sequence 8© A. Krings 2014 28

The two basic classes of human-made faults are distin-

guished by the objective of the developer or of the humans

interacting with the system during its use:

. Malicious faults, introduced during either system
development with the objective to cause harm to the
system during its use (5-6), or directly during use
(22-25).

. Nonmalicious faults (1-4, 7-21, 26-31), introduced
without malicious objectives.

We consider nonmalicious faults first. They can be

partitioned according to the developer’s intent:

. nondeliberate faults that are due to mistakes, that is,
unintended actions of which the developer, operator,
maintainer, etc. is not aware (1, 2, 7, 8, 16-18, 26-28);

. deliberate faults that are due to bad decisions, that is,
intended actions that are wrong and cause faults (3, 4,
9, 10, 19-21, 29-31).

Deliberate, nonmalicious, development faults (3, 4, 9, 10)
result generally from trade offs, either 1) aimed at
preserving acceptable performance, at facilitating system
utilization, or 2) induced by economic considerations.
Deliberate, nonmalicious interaction faults (19-21, 29-31)
may result from the action of an operator either aimed at
overcoming an unforeseen situation, or deliberately violat-

16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 5. The classes of combined faults (a) Matrix representation. (b) Tree representation.

CS448/548 Sequence 8© A. Krings 2014

• Non-malicious faults

• introduced without malicious objectives

• non-deliberate fault: due to mistakes, i.e.,
unintended action, developer/operator/
maintainer is not aware

• deliberate fault: due to bad decisions, i.e.,
unintended action that are wrong and cause
faults

3.2.3 ON HUMAN-MADE FAULTS

29

CS448/548 Sequence 8© A. Krings 2014

•Non-malicious faults

•further partitioning into:

• accidental faults

• incompetence faults

3.2.3 ON HUMAN-MADE FAULTS

30

CS448/548 Sequence 8© A. Krings 2014
ing an operating procedure without having realized the
possibly damaging consequences of this action. Deliberate,
nonmalicious faults are often recognized as faults only after
an unacceptable system behavior; thus, a failure has
ensued. The developer(s) or operator(s) did not realize at
the time that the consequence of their decision was a fault.

It is usually considered that both mistakes and bad
decisions are accidental, as long as they are not made with
malicious objectives. However, not all mistakes and bad
decisions by nonmalicious persons are accidents. Some very
harmful mistakes and very bad decisions are made by
persons who lack professional competence to do the job they
have undertaken. A complete fault taxonomy should not
conceal this cause of faults; therefore, we introduce a further
partitioning of nonmalicious human-made faults into 1) acci-
dental faults, and 2) incompetence faults. The structure of this
taxonomy of human-made faults is shown in Fig. 6.

The question of how to recognize incompetence faults
becomes important when a mistake or a bad decision has
consequences that lead to economic losses, injuries, or loss
of human lives. In such cases, independent professional
judgment by a board of inquiry or legal proceedings in a
court of law are likely to be needed to decide if professional
malpractice was involved.

Thus far, the discussion of incompetence faults has dealt
with individuals. However, human-made efforts have
failed because a team or an entire organization did not
have the organizational competence to do the job. A good
example of organizational incompetence is the development
failure of the AAS system, that was intended to replace the
aging air traffic control systems in the USA [67].

Nonmalicious development faults can exist in hardware
and in software. In hardware, especially in microprocessors,
some development faults are discovered after production
has started [5]. Such faults are called “errata” and are listed
in specification updates. The finding of errata typically
continues throughout the life of the processors; therefore,
new specification updates are issued periodically. Some
development faults are introduced because human-made
tools are faulty.

Off-the-shelf (OTS) components are inevitably used in
system design. The use of OTS components introduces
additional problems. They may come with known devel-
opment faults and may contain unknown faults as well
(bugs, vulnerabilities, undiscovered errata, etc.). Their
specifications may be incomplete or even incorrect. This
problem is especially serious when legacy OTS components
are used that come from previously designed and used

systems, and must be retained in the new system because of
the user’s needs.

Some development faults affecting software can cause
software aging [27], i.e., progressively accrued error
conditions resulting in performance degradation or com-
plete failure. Examples are memory bloating and leaking,
unterminated threads, unreleased file-locks, data corrup-
tion, storage space fragmentation, and accumulation of
round-off errors [10].

3.2.4 On Malicious Faults
Malicious human-made faults are introduced with the mal-
icious objective to alter the functioning of the system during
use. Because of the objective, classification according to intent
and capability is not applicable. The goals of such faults are:
1) to disrupt or halt service, causing denials of service; 2) to
access confidential information; or 3) to improperly modify
the system. They are grouped into two classes:

1. Malicious logic faults that encompass development
faults (5,6) such as Trojan horses, logic or timing
bombs, and trapdoors, as well as operational faults (25)
such as viruses, worms, or zombies. Definitions for
these faults [39], [55] are given in Fig. 7.

2. Intrusion attempts that are operational external
faults (22-24). The external character of intrusion
attempts does not exclude the possibility that they
may be performed by system operators or adminis-
trators who are exceeding their rights, and intrusion
attempts may use physical means to cause faults:
power fluctuation, radiation, wire-tapping, heating/
cooling, etc.

What is colloquially known as an “exploit” is in essence a
software script that will exercise a system vulnerability and
allow an intruder to gain access to, and sometimes control of,
a system. In the terms defined here, invoking the exploit is an
operational, external, human-made, software, malicious
interaction fault (24-25). Heating the RAM with a hairdryer
to cause memory errors that permit software security
violations would be an external, human-made, hardware,
malicious interaction fault (22-23). The vulnerability that an
exploit takes advantage of is typically a software flaw (e.g., an
unchecked buffer) that could be characterized as a develop-
mental, internal, human-made, software, nonmalicious,
nondeliberate, permanent fault (1-2).

3.2.5 On Interaction Faults
Interaction faults occur during the use phase, therefore they
are all operational faults. They are caused by elements of the
use environment (see Section 3.1) interacting with the
system; therefore, they are all external. Most classes
originate due to some human action in the use environment;
therefore, they are human-made. They are fault classes 16-31
in Fig. 5. An exception are external natural faults (14-15)
caused by cosmic rays, solar flares, etc. Here, nature
interacts with the system without human participation.

A broad class of human-made operational faults are
configuration faults, i.e., wrong setting of parameters that
can affect security, networking, storage, middleware, etc.
[24]. Such faults can occur during configuration changes
performed during adaptive or augmentative maintenance
performed concurrently with system operation (e.g.,

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 17

Fig. 6. Classification of human-made faults.

31

CS448/548 Sequence 8© A. Krings 2014

•Incompetence faults
•individual, group, organization
•e.g., Advance Automation System to
replace aging USA air traffic control
system

NON-MALICIOUS FAULTS

32

CS448/548 Sequence 8© A. Krings 2014

• Deployment faults
• hardware

• e.g., HW “errata” are listed in specification updates
• may continue during lifetime of the product

• software
• software aging: progressively accrued error

conditions cause performance degradation of failure
• e.g., memory bloating/leaking, unterminated threads,

storage space fragmentation, accumulation of
round-off errors, ...

NON-MALICIOUS FAULTS

33

CS448/548 Sequence 8© A. Krings 2014

•Malicious human-made faults

• typical goals:

•disrupt or halt service => denial of service

•access confidential information

• improperly modify the systems

3.2.4 ON MALICIOUS FAULTS

34

CS448/548 Sequence 8© A. Krings 2014

• Malicious logic faults
• development faults: e.g., Trojan horses, logic or

timing bombs, trapdoors
• operational faults: e.g. viruses, worms, zombies

• Intrusion attempts
• operational external faults. May be performed

by system operators/admins
• may use physical means to cause faults, e.g.,

power fluctuation, radiation, wire-tapping,
heating/cooling

3.2.4 ON MALICIOUS FAULTS

35

CS448/548 Sequence 8© A. Krings 2014

Fig 7.

Malicious

logic

faults

introduction of a new software version on a network
server); they are then called reconfiguration faults [70].

As mentioned in Section 2.2, a common feature of
interaction faults is that, in order to be “successful,” they
usually necessitate the prior presence of a vulnerability, i.e.,
an internal fault that enables an external fault to harm the
system. Vulnerabilities can be development or operational
faults; they can be malicious or nonmalicious, as can be the
external faults that exploit them. There are interesting and
obvious similarities between an intrusion attempt and a
physical external fault that “exploits” a lack of shielding. A
vulnerability can result from a deliberate development
fault, for economic or for usability reasons, thus resulting in
limited protections, or even in their absence.

3.3 Failures

3.3.1 Service Failures
In Section 2.2, a service failure is defined as an event that
occurs when the delivered service deviates from correct
service. The different ways in which the deviation is
manifested are a system’s service failure modes. Each mode
can have more than one service failure severity.

The occurrence of a failure was defined in Section 2 with
respect to the function of a system, not with respect to the
description of the function stated in the functional
specification: a service delivery complying with the
specification may be unacceptable for the system user(s),
thus uncovering a specification fault, i.e., revealing the fact
that the specification did not adequately describe the
system function(s). Such specification faults can be either
omission or commission faults (misinterpretations, unwar-
ranted assumptions, inconsistencies, typographical mis-
takes). In such circumstances, the fact that the event is
undesired (and is in fact a failure) may be recognized only
after its occurrence, for instance via its consequences. So,
failures can be subjective and disputable, i.e., may require
judgment to identify and characterize.

The service failure modes characterize incorrect service
according to four viewpoints:

1. the failure domain,
2. the detectability of failures,

3. the consistency of failures, and
4. the consequences of failures on the environment.

The failure domain viewpoint leads us to distinguish:

. content failures. The content of the information
delivered at the service interface (i.e., the service
content) deviates from implementing the system
function.

. timing failures. The time of arrival or the duration
of the information delivered at the service interface
(i.e., the timing of service delivery) deviates from
implementing the system function.

These definitions can be specialized: 1) the content can be
in numerical or nonnumerical sets (e.g., alphabets, graphics,
colors, sounds), and 2) a timing failure may be early or late,
depending on whether the service is delivered too early or
too late. Failures when both information and timing are
incorrect fall into two classes:

. halt failure, or simply halt, when the service is halted
(the external state becomes constant, i.e., system
activity, if there is any, is no longer perceptible to the
users); a special case of halt is silent failure, or
simply silence, when no service at all is delivered at
the service interface (e.g., no messages are sent in a
distributed system).

. erratic failures otherwise, i.e., when a service is
delivered (not halted), but is erratic (e.g., babbling).

Fig. 8 summarizes the service failure modes with respect
to the failure domain viewpoint.

The detectability viewpoint addresses the signaling of
service failures to the user(s). Signaling at the service
interface originates from detecting mechanisms in the
system that check the correctness of the delivered service.
When the losses are detected and signaled by a warning
signal, then signaled failures occur. Otherwise, they are
unsignaled failures. The detecting mechanisms themselves
have two failure modes: 1) signaling a loss of function when
no failure has actually occurred, that is a false alarm, 2) not
signaling a function loss, that is an unsignaled failure. When
the occurrence of service failures result in reduced modes of
service, the system signals a degraded mode of service to
the user(s). Degraded modes may range from minor
reductions to emergency service and safe shutdown.

The consistency of failures leads us to distinguish, when
a system has two or more users:

. consistent failures. The incorrect service is per-
ceived identically by all system users.

. inconsistent failures. Some or all system users
perceive differently incorrect service (some users
may actually perceive correct service); inconsistent
failures are usually called, after [38], Byzantine
failures.

Grading the consequences of the failures upon the system
environment enables failure severities to be defined. The
failure modes are ordered into severity levels, to which are
generally associated maximum acceptable probabilities of
occurrence. The number, the labeling, and the definition of
the severity levels, as well as the acceptable probabilities of
occurrence, are application-related, and involve the de-
pendability and security attributes for the considered

18 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 7. Malicious logic faults.

36

CS448/548 Sequence 8© A. Krings 2014

•Occur in use phase
•elements of the use environment
interaction with the system

•all external
•human-made

•Examples
•configuration faults, reconfiguration faults

3.2.5 ON INTERACTION FAULTS

37

CS448/548 Sequence 8© A. Krings 2014

• Service failure
• def.: event that occurs when the delivered service

deviates from correct service
• service failure modes: different ways in which

deviation is manifested
• content failure: content of info delivered deviates

from implementing the system function
• timing failure: time of arrival (early or late) or

duration of info delivered at service interface
deviates from implementing the system function.

3.3 FAILURES

38

CS448/548 Sequence 8© A. Krings 2014

•Service failure cont.
•both information and timing are
incorrect:
•halt failure: external state becomes
constant

• silent failure: no service is delivered at interface
•erratic failure: service is delivered (not
halted) but is erratic, e.g. babbling

3.3 FAILURES

39

CS448/548 Sequence 8© A. Krings 2014application(s). Examples of criteria for determining the
classes of failure severities are

1. for availability, the outage duration;
2. for safety, the possibility of human lives being

endangered;
3. for confidentiality, the type of information that may

be unduly disclosed; and
4. for integrity, the extent of the corruption of data and

the ability to recover from these corruptions.

Generally speaking, two limiting levels can be defined
according to the relation between the benefit (in the broad
sense of the term, not limited to economic considerations)
provided by the service delivered in the absence of failure,
and the consequences of failures:

. minor failures, where the harmful consequences are
of similar cost to the benefits provided by correct
service delivery;

. catastrophic failures, where the cost of harmful
consequences is orders of magnitude, or even
incommensurably, higher than the benefit provided
by correct service delivery.

Fig. 9 summarizes the service failure modes.
Systems that are designed and implemented so that they

fail only in specific modes of failure described in the
dependability and security specification and only to an
acceptable extent are fail-controlled systems, e.g., with
stuck output as opposed to delivering erratic values, silence
as opposed to babbling, consistent as opposed to incon-
sistent failures. A system whose failures are to an acceptable
extent halting failures only is a fail-halt (or fail-stop)
system; the situations of stuck service and of silence lead,
respectively, to fail-passive systems and fail-silent systems
[53]. A system whose failures are, to an acceptable extent,
all minor ones is a fail-safe system.

As defined in Section 2, delivery of incorrect service is an
outage, which lasts until service restoration. The outage
duration may vary significantly, depending on the actions
involved in service restoration after a failure has occurred:
1) automatic or operator-assisted recovery, restart, or
reboot; 2) corrective maintenance. Correction of develop-
ment faults (by patches or workarounds) is usually
performed offline, after service restoration, and the up-
graded components resulting from fault correction are then
introduced at some appropriate time with or without
interruption of system operation. Preemptive interruption

of system operation for an upgrade or for preventive
maintenance is a service shutdown, also called a planned
outage (as opposed to an outage consecutive to failure,
which is then called an unplanned outage).

3.3.2 Development Failures
As stated in Section 3.1, development faults may be
introduced into the system being developed by its environ-
ment, especially by human developers, development tools,
and production facilities. Such development faults may
contribute to partial or complete development failures, or
they may remain undetected until the use phase. A
complete development failure causes the development
process to be terminated before the system is accepted for
use and placed into service. There are two aspects of
development failures:

1. Budget failure. The allocated funds are exhausted
before the system passes acceptance testing.

2. Schedule failure. The projected delivery schedule slips
to a point in the future where the system would be
technologically obsolete or functionally inadequate
for the user’s needs.

The principal causes of development failures are:
incomplete or faulty specifications, an excessive number
of user-initiated specification changes; inadequate design
with respect to functionality and/or performance goals; too
many development faults; inadequate fault removal cap-
ability; prediction of insufficient dependability or security;
and faulty estimates of development costs. All are usually
due to an underestimate of the complexity of the system to
be developed.

There are two kinds of partial development failures, i.e.,
failures of lesser severity than project termination. Budget or
schedule overruns occur when the development is com-
pleted, but the funds or time needed to complete the effort
exceed the original estimates. Another form of partial
development failure is downgrading: The developed system
is delivered with less functionality, lower performance, or is
predicted to have lower dependability or security than was
required in the original system specification.

Development failures, overruns, and downgrades have a
very negative impact on the user community, see, e.g.,
statistics about large software projects [34], or the analysis
of the complete development failure of the AAS system,
that resulted in the waste of $1.5 billion [67].

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 19

Fig. 8. Service failure modes with respect to the failure domain
viewpoint.

Fig. 9. Service failure modes.

3.3 FAILURES

40

CS448/548 Sequence 8© A. Krings 2014

•Consistency

•consistent failures: incorrect service is
perceived identically by all system users

•inconsistent failures: some of all users
perceive differently incorrect service.
Byzantine failures

3.3 FAILURES

41

CS448/548 Sequence 8© A. Krings 2014
application(s). Examples of criteria for determining the
classes of failure severities are

1. for availability, the outage duration;
2. for safety, the possibility of human lives being

endangered;
3. for confidentiality, the type of information that may

be unduly disclosed; and
4. for integrity, the extent of the corruption of data and

the ability to recover from these corruptions.

Generally speaking, two limiting levels can be defined
according to the relation between the benefit (in the broad
sense of the term, not limited to economic considerations)
provided by the service delivered in the absence of failure,
and the consequences of failures:

. minor failures, where the harmful consequences are
of similar cost to the benefits provided by correct
service delivery;

. catastrophic failures, where the cost of harmful
consequences is orders of magnitude, or even
incommensurably, higher than the benefit provided
by correct service delivery.

Fig. 9 summarizes the service failure modes.
Systems that are designed and implemented so that they

fail only in specific modes of failure described in the
dependability and security specification and only to an
acceptable extent are fail-controlled systems, e.g., with
stuck output as opposed to delivering erratic values, silence
as opposed to babbling, consistent as opposed to incon-
sistent failures. A system whose failures are to an acceptable
extent halting failures only is a fail-halt (or fail-stop)
system; the situations of stuck service and of silence lead,
respectively, to fail-passive systems and fail-silent systems
[53]. A system whose failures are, to an acceptable extent,
all minor ones is a fail-safe system.

As defined in Section 2, delivery of incorrect service is an
outage, which lasts until service restoration. The outage
duration may vary significantly, depending on the actions
involved in service restoration after a failure has occurred:
1) automatic or operator-assisted recovery, restart, or
reboot; 2) corrective maintenance. Correction of develop-
ment faults (by patches or workarounds) is usually
performed offline, after service restoration, and the up-
graded components resulting from fault correction are then
introduced at some appropriate time with or without
interruption of system operation. Preemptive interruption

of system operation for an upgrade or for preventive
maintenance is a service shutdown, also called a planned
outage (as opposed to an outage consecutive to failure,
which is then called an unplanned outage).

3.3.2 Development Failures
As stated in Section 3.1, development faults may be
introduced into the system being developed by its environ-
ment, especially by human developers, development tools,
and production facilities. Such development faults may
contribute to partial or complete development failures, or
they may remain undetected until the use phase. A
complete development failure causes the development
process to be terminated before the system is accepted for
use and placed into service. There are two aspects of
development failures:

1. Budget failure. The allocated funds are exhausted
before the system passes acceptance testing.

2. Schedule failure. The projected delivery schedule slips
to a point in the future where the system would be
technologically obsolete or functionally inadequate
for the user’s needs.

The principal causes of development failures are:
incomplete or faulty specifications, an excessive number
of user-initiated specification changes; inadequate design
with respect to functionality and/or performance goals; too
many development faults; inadequate fault removal cap-
ability; prediction of insufficient dependability or security;
and faulty estimates of development costs. All are usually
due to an underestimate of the complexity of the system to
be developed.

There are two kinds of partial development failures, i.e.,
failures of lesser severity than project termination. Budget or
schedule overruns occur when the development is com-
pleted, but the funds or time needed to complete the effort
exceed the original estimates. Another form of partial
development failure is downgrading: The developed system
is delivered with less functionality, lower performance, or is
predicted to have lower dependability or security than was
required in the original system specification.

Development failures, overruns, and downgrades have a
very negative impact on the user community, see, e.g.,
statistics about large software projects [34], or the analysis
of the complete development failure of the AAS system,
that resulted in the waste of $1.5 billion [67].

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 19

Fig. 8. Service failure modes with respect to the failure domain
viewpoint.

Fig. 9. Service failure modes.

SERVICE FAILURE MODES

42

CS448/548 Sequence 8© A. Krings 2014

•Budget failure
•“broke” before system passes acceptance
testing

•Schedule failure
•schedule slips to a point in the future
where the system would be
technologically obsolete or functionally
inadequate for user’s needs

3.3.2 DEVELOPMENT FAILURES

43

CS448/548 Sequence 8© A. Krings 2014

fault dormancy may vary considerably, depending upon

the fault, the given system’s utilization, etc.
The ability to identify the activation pattern of a fault

that had caused one or more errors is the fault activation

reproducibility. Faults can be categorized according to

their activation reproducibility: Faults whose activation is

reproducible are called solid, or hard, faults, whereas faults
whose activation is not systematically reproducible are
elusive, or soft, faults. Most residual development faults in
large and complex software are elusive faults: They are
intricate enough that their activation conditions depend on
complex combinations of internal state and external

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 21

Fig. 10. Error propagation.

Fig. 11. The fundamental chain of dependability and security threats.

Fig. 12. Examples illustrating fault pathology.

Fig. 10 Error Propagation

3.5 FAULTS, ERRORS AND FAILURES

44

CS448/548 Sequence 8© A. Krings 2014

•traditional hardware fault tolerance
view
•physical fault (may be dormant), e.g.,
stuck-at

•produces error
•may result in failure

EXAMPLES

45

CS448/548 Sequence 8© A. Krings 2014

•programming “bug”
•error by programmer leads to failure to
write the correct instruction or data

•this results in a (dormant) fault in code or
data

•upon activation the fault becomes active
and produces an error

•this error may result in failure

EXAMPLES

46

CS448/548 Sequence 8© A. Krings 2014

•Specification related
•error by a specifier leads to failure to
describe a function

• this results in a fault in a written specification,
e.g., incomplete description of a function.

• this incomplete function may deliver service
different from expected service

•user perceives this as error resulting in failure

EXAMPLES

47

CS448/548 Sequence 8© A. Krings 2014

•Inappropriate human-system interaction
•inappropriate human-system interaction
performed by operator during operation
of system

•results in external fault (from system’s
viewpoint)

•resulting altered processed data is an
error...

EXAMPLES

48

CS448/548 Sequence 8© A. Krings 2014

•Reasoning
•error in reasoning leads to a maintenance
or operating manual writer’s failure to
write correct directives

•results in a fault in the manual (faulty
directives) that will remain dormant as
long as the directives are not acted
upon...

EXAMPLES

49

CS448/548 Sequence 8© A. Krings 2014

• Combined action of several faults

• consider trap-door (by-pass access control)

• this is a development fault

• remains dormant until exploited

• intruder login is deliberate interaction fault

• intruder may create an error -> service affected ->
failure

EXAMPLES

50

CS448/548 Sequence 8© A. Krings 2014

• Hard (or solid) faults
• fault activation is reproducible

• Soft (or elusive) faults
• not systematically reproducible

requests, that occur rarely and can be very difficult to
reproduce [23]. Other examples of elusive faults are:

. “pattern sensitive” faults in semiconductor mem-
ories, changes in the parameters of a hardware
component (effects of temperature variation, delay
in timing due to parasitic capacitance, etc.).

. conditions—affecting either hardware or software
—that occur when the system load exceeds a certain
level, causing, for example, marginal timing and
synchronization.

The similarity of the manifestation of elusive develop-
ment faults and of transient physical faults leads to both
classes being grouped together as intermittent faults.
Errors produced by intermittent faults are usually termed
soft errors. Fig. 13. summarizes this discussion.

Situations involving multiple faults and/or failures are
frequently encountered. System failures often turn out on
later examination to have been caused by errors that are due
to a number of different coexisting faults. Given a system
with defined boundaries, a single fault is a fault caused by
one adverse physical event or one harmful human action.
Multiple faults are two or more concurrent, overlapping, or
sequential single faults whose consequences, i.e., errors,
overlap in time, that is, the errors due to these faults are
concurrently present in the system. Consideration of multi-
ple faults leads one to distinguish 1) independent faults,
that are attributed to different causes, and 2) related faults,
that are attributed to a common cause. Related faults
generally cause similar errors, i.e., errors that cannot be
distinguished by whatever detection mechanisms are being
employed, whereas independent faults usually cause
distinct errors. However, it may happen that independent
faults (especially omissions) lead to similar errors [6], or
that related faults lead to distinct errors. The failures caused
by similar errors are common-mode failures.

Three additional comments, about the words, or labels,
“threats,” “fault,” “error,” and “failure:”

1. The use of threats, for generically referring to faults,
errors, and failures has a broader meaning than its
common use in security, where it essentially retains
it usual notion of potentiality. In our terminology, it
has both this potentiality aspect (e.g., faults being
not yet active, service failures not having impaired
dependability), and a realization aspect (e.g., active
fault, error that is present, service failure that
occurs). In security terms, a malicious external fault
is an attack.

2. The exclusive use in this paper of faults, errors, and
failures does not preclude the use in special
situations of words which designate, briefly and
unambiguously, a specific class of threat; this is
especially applicable to faults (e.g., bug, defect,

deficiency, flaw, erratum) and to failures (e.g.,
breakdown, malfunction, denial-of-service).

3. The assignment made of the particular terms fault,
error, and failure simply takes into account common
usage: 1) fault prevention, tolerance, and diagnosis,
2) error detection and correction, 3) failure rate.

4 DEPENDABILITY, SECURITY, AND THEIR
ATTRIBUTES

4.1 The Definitions of Dependability and Security

In Section 2.3, we have presented two alternate definitions
of dependability:

. the original definition: the ability to deliver service
that can justifiably be trusted.

. an alternate definition: the ability of a system to
avoid service failures that are more frequent or more
severe than is acceptable.

The original definition is a general definition that aims to
generalize the more classical notions of availability, relia-
bility, safety, integrity, maintainability, etc., that then
become attributes of dependability. The alternate definition
of dependability comes from the following argument. A
system can, and usually does, fail. Is it however still
dependable? When does it become undependable? The
alternate definition thus provides a criterion for deciding
whether or not, in spite of service failures, a system is still to
be regarded as dependable. In addition, the notion of
dependability failure, that is directly deduced from that
definition, enables the establishment of a connection with
development failures.

The definitions of dependability that exist in current
standards differ from our definitions. Two such differing
definitions are:

. “The collective term used to describe the availability
performance and its influencing factors: reliability
performance, maintainability performance and
maintenance support performance” [31].

. “The extent to which the system can be relied upon
to perform exclusively and correctly the system
task(s) under defined operational and environmen-
tal conditions over a defined period of time, or at a
given instant of time” [29].

The ISO definition is clearly centered upon availability.
This is no surprise as this definition can be traced back to the
definition given by the international organization for tele-
phony, the CCITT [11], at a time when availability was the
main concern to telephone operating companies. However,
the willingness to grant dependability a generic character is
noteworthy, since it goes beyond availability as it was
usually defined, and relates it to reliability and maintain-
ability. In this respect, the ISO/CCITT definition is consistent
with the definition given in [26] for dependability: “the
probability that a system will operate when needed.” The
second definition, from [29], introduces the notion of
reliance, and as such is much closer to our definitions.

Terminology in the security world has its own rich
history. Computer security, communications security, in-
formation security, and information assurance are terms that
have had a long development and use in the community of
security researchers and practitioners, mostly without direct

22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 13. Solid versus intermittent faults.

HARD AND SOFT FAULTS

51

CS448/548 Sequence 8© A. Krings 2014

• From definition point of view

reference to dependability. Nevertheless, all of these terms
can be understood in terms of the three primary security
attributes of confidentiality, integrity, and availability.

Security has not been characterized as a single attribute
of dependability. This is in agreement with the usual
definitions of security, that view it as a composite notion,
namely, “the combination of confidentiality, the prevention
of the unauthorized disclosure of information, integrity, the
prevention of the unauthorized amendment or deletion of
information, and availability, the prevention of the un-
authorized withholding of information” [12], [52]. Our
unified definition for security is the absence of unauthor-
ized access to, or handling of, system state. The relationship
between dependability and security is illustrated by Fig. 14,
that is a refinement of Fig. 1.

4.2 Dependence and Trust

We have introduced the notions of dependence and trust in
Section 2.3:

. The dependence of system A on system B represents
the extent to which System A’s dependability is (or
would be) affected by that of System B.

. Trust is accepted dependence.

The dependence of a system on another system can vary
from total dependence (any failure of B would cause A to
fail) to complete independence (B cannot cause A to fail). If
there is reason to believe that B’s dependability will be
insufficient for A’s required dependability, the former
should be enhanced, A’s dependence reduced, or additional
means of fault tolerance provided. Our definition of
dependence relates to the relation depends upon [50], [14],
whose definition is a component a depends upon a
component b if the correctness of b’s service delivery is
necessary for the correctness of a’s service delivery.
However, this relation is expressed in terms of the narrower
concept of correctness, rather than dependability, and,
hence, is only binary, whereas our notion of dependence
can take values on a measurable space.

By accepted dependence, we mean the dependence (say
of A on B) allied to a judgment that this level of dependence
is acceptable. Such a judgment (made by or on behalf of A)
about B is possibly explicit and even laid down in a contract
between A and B, but might be only implicit, even
unthinking. Indeed, it might even be unwilling—in that A
has no alternative option but to put its trust in B. Thus, to
the extent that A trusts B, it need not assume responsibility
for, i.e., provide means of tolerating, B’s failures (the
question of whether it is capable of doing this is another
matter). In fact, the extent to which A fails to provide means
of tolerating B’s failures is a measure of A’s (perhaps
unthinking or unwilling) trust in B.

4.3 The Attributes of Dependability and Security

The attributes of dependability and security that have been
defined in Section 2.3 may be of varying importance
depending on the application intended for the given
computing system: Availability, integrity, and maintain-
ability are generally required, although to a varying degree
depending on the application, whereas reliability, safety,
and confidentiality may or may not be required according
to the application. The extent to which a system possesses
the attributes of dependability and security should be
considered in a relative, probabilistic, sense, and not in an
absolute, deterministic sense: Due to the unavoidable
presence or occurrence of faults, systems are never totally
available, reliable, safe, or secure.

The definition given for integrity—absence of improper
system state alterations—goes beyond the usual definitions,
that 1) relate to the notion of authorized actions only, and
2) focus on information (e.g., prevention of the unauthor-
ized amendment or deletion of information [12], assurance
of approved data alterations [33]): 1) naturally, when a
system implements an authorization policy, “improper”
encompasses “unauthorized,” 2) “improper alterations”
encompass actions that prevent (correct) upgrades of
information, and 3) “system state” includes system mod-
ifications or damages.

The definition given formaintainability intentionally goes
beyond corrective and preventive maintenance, and en-
compasses the other forms ofmaintenance defined in Section
3, i.e., adaptive and augmentative maintenance. The concept
of autonomic computing [22] has as its major aim the
provision of high maintainability for large networked
computer systems, though automation of their management.

Besides the attributes defined in Section 2 and discussed
above, other, secondary, attributes can be defined, which
refine or specialize the primary attributes as defined in
Section 2. An example of a specialized secondary attribute is
robustness, i.e., dependability with respect to external
faults, which characterizes a system reaction to a specific
class of faults.

The notion of secondary attributes is especially relevant
for security, and is based on distinguishing among various
types of information [9]. Examples of such secondary
attributes are:

. accountability: availability and integrity of the
identity of the person who performed an operation;

. authenticity: integrity of a message content and
origin, and possibly of some other information, such
as the time of emission;

. nonrepudiability: availability and integrity of the
identity of the sender of a message (nonrepudiation
of the origin), or of the receiver (nonrepudiation of
reception).

The concept of a security policy is that of a set of
security-motivated constraints, that are to be adhered to by,
for example, an organization or a computer system [47]. The
enforcement of such constraints may be via technical,
management, and/or operational controls, and the policy
may lay down how these controls are to be enforced. In
effect, therefore, a security policy is a (partial) system
specification, lack of adherence to which will be regarded as
a security failure. In practice, there may be a hierarchy of

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 23

Fig. 14. Relationship between dependability and security.

4. DEPENDABILITY AND SECURITY

52

CS448/548 Sequence 8© A. Krings 2014

• Dependence
• The dependence of system A on system B

represents the extent to which System A’s
dependability is (or would be) affected by that of
System B.

• a component a depends upon a component b if the
correctness of b’s service delivery is necessary for
the correctness of a’s service delivery.

• Trust
• Trust is accepted dependence.

4. DEPENDENCE AND TRUST

53

CS448/548 Sequence 8© A. Krings 2014

• Levels of dependence
• from total dependence to complete independence

• Accepted dependence
• judgement that level of dependence is acceptable
• judgement possibly explicit, e.g., contract between

“parties”
• judgement may be unwilling, e.g., there is no other

option!
• the extent to which A fails to provide means of

tolerating B’s failures is a measure of A’s (perhaps
unthinking or unwilling) trust in B.

4. DEPENDENCE AND TRUST

54

CS448/548 Sequence 8© A. Krings 2014

•Availability, integrity, maintainability,
reliability, safety, confidentiality...

•Don’t think binary, absolute, or
deterministic

•Do think relative and probabilistic

4.3 ATTRIBUTES OF DEP. & SEC.

55

CS448/548 Sequence 8© A. Krings 2014

such security policies, relating to a hierarchy of systems
—for example, an entire company, its information systems
department, and the individuals and computer systems in
this department. Separate, albeit related policies, or separate
parts of an overall policy document, may be created
concerning different security issues, e.g., a policy regarding
the controlled public disclosure of company information,
one on physical and networked access to the company’s
computers. Some computer security policies include con-
straints on how information may flow within a system as
well as constraints on system states.

As with any set of dependability and security specifica-
tions, issues of completeness, consistency, and accuracy are
of great importance. There has thus been extensive research
on methods for formally expressing and analyzing security
policies. However, if some system activity is found to be in
a contravention of a relevant security policy then, as with
any system specification, the security failure may either be
that of the system, or because the policy does not
adequately describe the intended security requirement. A
well-known example of an apparently satisfactory security
policy that proved to be deficient, by failing to specify some
particular behaviour as insecure, is discussed by [44].

Dependability and security classes are generally defined via
the analysis of failure frequencies and severities, and of
outage durations, for the attributes that are of concern for a
given application. This analysis may be conducted directly
or indirectly via risk assessment (see, e.g., [25] for
availability, [58] for safety, and [32] for security).

The variations in the emphasis placed on the different
attributes directly influence the balance of the techniques
(fault prevention, tolerance, removal, and forecasting) to be
employed in order to make the resulting system dependable
and secure. This problem is all the more difficult as some of
the attributes are conflicting (e.g., availability and safety,
availability and confidentiality), necessitating that trade offs
be made.

4.4 Dependability, High Confidence, Survivability,
and Trustworthiness

Other concepts similar to dependability exist, such as high
confidence, survivability, and trustworthiness. They are
presented and compared to dependability in Fig. 15. A side-
by-side comparison leads to the conclusion that all four
concepts are essentially equivalent in their goals and
address similar threats.

5 THE MEANS TO ATTAIN DEPENDABILITY AND

SECURITY

In this section, we examine in turn fault prevention, fault
tolerance, fault removal, and fault forecasting. The section
ends with a discussion on the relationship between these
various means.

5.1 Fault Prevention
Fault prevention is part of general engineering, and, as such,
will not bemuch emphasized here. However, there are facets
of fault prevention that are of direct interest regarding
dependability and security, and that can be discussed
according to the classes of faults defined in Section 3.2.

Prevention of development faults is an obvious aim
for development methodologies, both for software (e.g.,
information hiding, modularization, use of strongly-typed
programming languages) and hardware (e.g., design rules).
Improvement of development processes in order to reduce
the number of faults introduced in the produced systems is
a step further in that it is based on the recording of faults in
the products, and the elimination of the causes of the faults
via process modifications [13], [51].

5.2 Fault Tolerance

5.2.1 Fault Tolerance Techniques
Fault tolerance [3], which is aimed at failure avoidance, is
carried out via error detection and system recovery. Fig. 16
gives the techniques involved in fault tolerance.

24 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 15. Dependability, high confidence, survivability, and trustworthiness.

Fig. 15. Dependability, high confidence, survivability, and trustworthiness.

56

CS448/548 Sequence 8© A. Krings 2014

•General engineering

•e.g., prevention of development faults

•development methodologies

•SW: e.g., information hiding,
modularization strongly-typed
programming languages

•HW: e.g., design rules

5.1 FAULT PREVENTION

57

CS448/548 Sequence 8© A. Krings 2014

•Concepts
•Diagnosis
•Rollback recovery
•Forward recovery
•Fault masking
•How are these concepts related?

5.1 FAULT TOLERANCE

58

CS448/548 Sequence 8© A. Krings 2014one of the important benefits of the self-checking component
approach is the ability to give a clear definition of error
confinement areas [63].

It is evident that not all fault tolerance techniques are
equally effective. The measure of effectiveness of any given
fault tolerance technique is called its coverage. The
imperfections of fault tolerance, i.e., the lack of fault tolerance
coverage, constitute a severe limitation to the increase in
dependability that can be obtained. Such imperfections of
fault tolerance (Fig. 18) are due either

1. to development faults affecting the fault tolerance
mechanisms with respect to the fault assumptions
stated during the development, the consequence of
which is a lack of error and fault handling coverage
(defined with respect to a class of errors or faults,
e.g., single errors, stuck-at faults, etc., as the
conditional probability that the technique is effec-
tive, given that the errors or faults have occurred), or

2. to fault assumptions that differ from the faults really
occurring in operation, resulting in a lack of fault
assumption coverage, that can be in turn due to either
1) failed component(s) not behaving as assumed,
that is a lack of failure mode coverage, or 2) the
occurrence of common-mode failures when inde-
pendent ones are assumed, that is a lack of failure
independence coverage.

The lack of error and fault handling coverage has been
shown to be a drastic limit to dependability improvement
[8], [1]. Similar effects can result from the lack of failure
mode coverage: conservative fault assumptions (e.g.,
Byzantine faults) will result in a higher failure mode
coverage, at the expense of necessitating an increase in the
redundancy and more complex fault tolerance mechanisms,
which can lead to an overall decrease in system depend-
ability and security [54].

An important issue in coordination of the activities of
multiple components is prevention of error propagation
from affecting the operation of nonfailed components. This
issue becomes particularly important when a given compo-
nent needs to communicate some information to other
components. Typical examples of such single-source informa-
tion are local sensor data, the value of a local clock, the local
view of the status of other components, etc. The consequence
of this need to communicate single-source information from
one component to other components is that nonfailed
components must reach an agreement as to how the
information they obtain should be employed in a mutually
consistent way. This is known as the consensus problem [43].

Fault tolerance is (also) a recursive concept: it is essential
that the mechanisms that implement fault tolerance should
be protected against the faults that might affect them.
Examples of such protection are voter replication, self-
checking checkers, “stable” memory for recovery programs
and data.

Systematic introduction of fault tolerance is often
facilitated by the addition of support systems specialized
for fault tolerance (e.g., software monitors, service proces-
sors, dedicated communication links).

Reflection, a technique for transparently and appropri-
ately augmenting all relevant actions of an object or software
component, e.g., in order to ensure that these actions can be
undone if necessary, can be used in object-oriented software
and through the provision of middleware [17].

Fault tolerance applies to all classes of faults. Protection
against intrusions traditionally involves cryptography and

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 17. Examples for the basic strategies for implementing fault tolerance.

Fig. 18. Fault tolerance coverage.

Fig. 17. Examples for the basic strategies for implementing fault tolerance.

59

CS448/548 Sequence 8© A. Krings 2014

• Fig 18 fault tolerance coverage

one of the important benefits of the self-checking component
approach is the ability to give a clear definition of error
confinement areas [63].

It is evident that not all fault tolerance techniques are
equally effective. The measure of effectiveness of any given
fault tolerance technique is called its coverage. The
imperfections of fault tolerance, i.e., the lack of fault tolerance
coverage, constitute a severe limitation to the increase in
dependability that can be obtained. Such imperfections of
fault tolerance (Fig. 18) are due either

1. to development faults affecting the fault tolerance
mechanisms with respect to the fault assumptions
stated during the development, the consequence of
which is a lack of error and fault handling coverage
(defined with respect to a class of errors or faults,
e.g., single errors, stuck-at faults, etc., as the
conditional probability that the technique is effec-
tive, given that the errors or faults have occurred), or

2. to fault assumptions that differ from the faults really
occurring in operation, resulting in a lack of fault
assumption coverage, that can be in turn due to either
1) failed component(s) not behaving as assumed,
that is a lack of failure mode coverage, or 2) the
occurrence of common-mode failures when inde-
pendent ones are assumed, that is a lack of failure
independence coverage.

The lack of error and fault handling coverage has been
shown to be a drastic limit to dependability improvement
[8], [1]. Similar effects can result from the lack of failure
mode coverage: conservative fault assumptions (e.g.,
Byzantine faults) will result in a higher failure mode
coverage, at the expense of necessitating an increase in the
redundancy and more complex fault tolerance mechanisms,
which can lead to an overall decrease in system depend-
ability and security [54].

An important issue in coordination of the activities of
multiple components is prevention of error propagation
from affecting the operation of nonfailed components. This
issue becomes particularly important when a given compo-
nent needs to communicate some information to other
components. Typical examples of such single-source informa-
tion are local sensor data, the value of a local clock, the local
view of the status of other components, etc. The consequence
of this need to communicate single-source information from
one component to other components is that nonfailed
components must reach an agreement as to how the
information they obtain should be employed in a mutually
consistent way. This is known as the consensus problem [43].

Fault tolerance is (also) a recursive concept: it is essential
that the mechanisms that implement fault tolerance should
be protected against the faults that might affect them.
Examples of such protection are voter replication, self-
checking checkers, “stable” memory for recovery programs
and data.

Systematic introduction of fault tolerance is often
facilitated by the addition of support systems specialized
for fault tolerance (e.g., software monitors, service proces-
sors, dedicated communication links).

Reflection, a technique for transparently and appropri-
ately augmenting all relevant actions of an object or software
component, e.g., in order to ensure that these actions can be
undone if necessary, can be used in object-oriented software
and through the provision of middleware [17].

Fault tolerance applies to all classes of faults. Protection
against intrusions traditionally involves cryptography and

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 17. Examples for the basic strategies for implementing fault tolerance.

Fig. 18. Fault tolerance coverage.

FAULT COVERAGE

60

CS448/548 Sequence 8© A. Krings 2014

• During Development
• Verification

• the process of checking whether the system
adheres to given properties, termed the
verification conditions

• Diagnosis
• diagnosing the fault(s) that prevented the

verification conditions from being fulfilled
• Correction

• after correction repeat verification:
nonregression verification

5.3 FAULT REMOVAL

61

CS448/548 Sequence 8© A. Krings 2014

• Static Verification
• Verification without actual execution
• On System:

• use static analysis
• theorem proving

• On Model of system behavior
• model checking: state transition model
• e.g., Petri net, state automata

5.3 FAULT REMOVAL

62

CS448/548 Sequence 8© A. Krings 2014

•What is the relationship between
Specification and what has been
implemented?

•discussion on mapping in two
directions

SIDE NOTE

63

CS448/548 Sequence 8© A. Krings 2014

Designing a system in order to facilitate its verification is
termed design for verifiability. This approach is well-
developed for hardware with respect to physical faults,
where the corresponding techniques are termed design for
testability.

5.3.2 Fault Removal During Use
Fault removal during the use of a system is corrective or
preventive maintenance. Corrective maintenance aims to
remove faults that have produced one or more errors and
have been reported, while preventive maintenance is aimed
at uncovering and removing faults before they might cause
errors during normal operation. The latter faults include
1) physical faults that have occurred since the last
preventive maintenance actions, and 2) development faults
that have led to errors in other similar systems. Corrective
maintenance for development faults is usually performed in
stages: The fault may be first isolated (e.g., by a workaround
or a patch) before the actual removal is completed. These
forms of maintenance apply to nonfault-tolerant systems as
well as to fault-tolerant systems, that can be maintainable
online (without interrupting service delivery) or offline
(during service outage).

5.4 Fault Forecasting
Fault forecasting is conducted by performing an evaluation
of the system behavior with respect to fault occurrence or
activation. Evaluation has two aspects:

. qualitative, or ordinal, evaluation, that aims to
identify, classify, and rank the failure modes, or the
event combinations (component failures or environ-
mental conditions) that would lead to system
failures;

. quantitative, or probabilistic, evaluation, that aims
to evaluate in terms of probabilities the extent to
which some of the attributes are satisfied; those
attributes are then viewed as measures.

The methods for qualitative and quantitative evaluation
are either specific (e.g., failure mode and effect analysis for
qualitative evaluation, or Markov chains and stochastic
Petri nets for quantitative evaluation), or they can be used
to perform both forms of evaluation (e.g., reliability block
diagrams, fault-trees).

The two main approaches to probabilistic fault-forecast-
ing, aimed to derive probabilistic estimates, are modeling
and (evaluation) testing. These approaches are complemen-
tary since modeling needs data on the basic processes
modeled (failure process, maintenance process, system
activation process, etc.), that may be obtained either by
testing, or by the processing of failure data.

Modeling can be conducted with respect to 1) physical
faults, 2) development faults, or 3) a combination of both.
Although modeling is usually performed with respect to
nonmalicious faults, attempts to perform modeling with
respect to malicious faults are worth mentioning [49], [61].
Modeling is composed of two phases:

. The construction of a model of the system from the
elementary stochastic processes that model the
behavior of the components of the system and their
interactions; these elementary stochastic processes
relate to failure, to service restoration including
repair, and possibly to system duty cycle or phases
of activity.

. Processing themodel to obtain the expressions and the
values of the dependability measures of the system.

Generally, several services can be distinguished, as well
as two or more modes of service, e.g., ranging from full
capacity to emergency service. These modes distinguish less
and less complete service deliveries. Performance-related
measures of dependability are usually subsumed into the
notion of performability [45], [64].

Reliability growth models, either for hardware, for soft-
ware, or for both, are used to perform reliability predictions
from data about past system failures.

Evaluation testing can be characterized using the view-
points defined in Section 5.3.1, i.e., conformance, functional,
non-fault-based, statistical, testing, although it is not—
primarily—aimed at verifying a system. A major concern is
that the input profile should be representative of the
operational profile [46]; hence, the usual name of evaluation
testing is operational testing.

When evaluating fault-tolerant systems, the coverage
provided by error and fault handling mechanisms has a
drastic influence [8], [1] on dependability measures. The
evaluation of coverage can be performed either through
modeling or through testing, i.e., fault injection.

The notion of dependability and security benchmark,
that is a procedure to assess measures of the behavior of a
computer system in the presence of faults, enables the
integration of the various techniques of fault forecasting in a
unified framework. Such a benchmark enables 1) character-
ization of the dependability and security of a system, and
2) comparison of alternative or competitive solutions accord-
ing to one or several attributes [37].

28 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 1, NO. 1, JANUARY-MARCH 2004

Fig. 19. Verification approaches.

Fig. 20. Testing approaches according to test pattern selection.

VERIFICATION APPROACHES

64

CS448/548 Sequence 8© A. Krings 2014

• Predictive approach

• qualitative evaluation, aims to identify, classify, and
rank the failure modes, or the event combinations
(component failures or environ- mental conditions)
that would lead to system failures;

• quantitative (or probabilistic) evaluation, aims
to evaluate in terms of probabilities the extent to
which some of the attributes are satisfied; those
attributes are then viewed as measures.

5.4 FAULT FORECASTING

65

CS448/548 Sequence 8© A. Krings 2014

System boundary 2.1 System life cycle 3.1
System recovery 5.2.1 Testing 5.3.1 Timing failure 3.3.1
Total state 2.1 Transient fault 3.2.1 Transition 2.2
Trapdoor 3.2.4 Trojan horse 3.2.4 Trust 2.3
Trustworthiness 4.4 Unsignaled failure 3.3.1
Use environment 3.1 Use interface 2.1 Use phase 3.1
User 2.1 Validation 5.3.1 Verification 5.3.1 Virus 3.2.4
Vulnerability 2.2 Worm 3.2.4 Zombie 3.2.4

ACKNOWLEDGMENTS

The authors are pleased to acknowledge many fruitful
interactions with numerous colleagues, in particular Jean
Arlat, Alain Costes, Yves Deswarte, Cliff Jones, and
especially with fellow members of IFIP WG 10.4 on
Dependable Computing and Fault Tolerance. Early part of
this work received support from the CNRS-NSF grant
“Tolerance to intentional faults.”

REFERENCES

[1] T.F. Arnold, “The Concept of Coverage and Its Effect on the
Reliability Model of Repairable Systems,” IEEE Trans. Computers,
vol. 22, no. 6, pp. 251-254, June 1973.

[2] D. Avresky, J. Arlat, J.C. Laprie, and Y. Crouzet, “Fault Injection
for Formal Testing of Fault Tolerance,” IEEE Trans. Reliability,
vol. 45, no. 3, pp. 443-455, Sept. 1996.

[3] A. Avi!zzienis, “Design of Fault-Tolerant Computers,” Proc. 1967 Fall
Joint Computer Conf., AFIPS Conf. Proc., vol. 31, pp. 733-743, 1967.

[4] A. Avi!zzienis and L. Chen, “On the Implementation of N-Version
Programming for Software Fault Tolerance During Execution,”
Proc. IEEE COMPSAC 77 Conf., pp. 149-155, Nov. 1977.

[5] A. Avi!zzienis and Y. He, “Microprocessor Entomology: A
Taxonomy of Design Faults in COTS Microprocessors,”Dependable
Computing for Critical Applications 7, C.B. Weinstock and J. Rushby,
eds., pp. 3-23, 1999.

[6] A. Avi!zzienis and J.P.J. Kelly, “Fault Tolerance by Design Diversity:
Concepts and Experiments,” Computer, vol. 17, no. 8, pp. 67-80,
Aug. 1984.

[7] B.W. Boehm, “Guidelines for Verifying and Validating Software
Requirements and Design Specifications,” Proc. European Conf.
Applied Information Technology (IFIP ’79), pp. 711-719, Sept. 1979.

[8] W.G. Bouricius, W.C. Carter, and P.R. Schneider, “Reliability
Modeling Techniques for Self-Repairing Computer Systems,”
Proc. 24th Nat’l Conf. ACM, pp. 295-309, 1969.

[9] C. Cachin, J. Camenisch, M. Dacier, Y. Deswarte, J. Dobson, D.
Horne, K. Kursawe, J.C. Laprie, J.C. Lebraud, D. Long, T.
McCutcheon, J. Muller, F. Petzold, B. Pfitzmann, D. Powell, B.
Randell, M. Schunter, V. Shoup, P. Verissimo, G. Trouessin, R.J.
Stroud, M. Waidner, and I. Welch, “Malicious- and Accidental-
Fault Tolerance in Internet Applications: Reference Model and Use
Cases,” LAAS report no. 00280, MAFTIA, Project IST-1999-11583,
p. 113, Aug. 2000.

[10] V. Castelli, R.E. Harper, P. Heidelberger, S.W. Hunter, K.S.
Trivedi, K. Vaidyanathan, and W.P. Zeggert, “Proactive Manage-
ment of Software Aging,” IBM J. Research and Development, vol. 45,
no. 2, pp. 311-332, Mar. 2001.

[11] “Termes et Définitions Concernant la Qualité de Service, la
Disponibilité et la fiabilité,”Recommandation G 106, CCITT, 1984.

[12] Information Technology Security Evaluation Criteria, Harmo-
nized criteria of France, Germany, the Netherlands, the United
Kingdom, Commission of the European Communities, 1991.

[13] R. Chillarege, I.S. Bhandari, J.K. Chaar, J. Halliday, D.S. Moebus,
B.K. Ray, and M.-Y. Wong, “Orthogonal Defect Classification-A
Concept for In-Process Measurements,” IEEE Trans. Software Eng.,
vol. 18, no. 11, pp. 943-956, Nov. 1992.

[14] F. Cristian, “Understanding Fault-Tolerant Distributed Systems,”
Comm. ACM, vol. 34, no. 2, pp. 56-78, 1991.

AVI!ZZIENIS ET AL.: BASIC CONCEPTS AND TAXONOMY OF DEPENDABLE AND SECURE COMPUTING 31

Fig. 22. A refined dependability and security tree.

66

