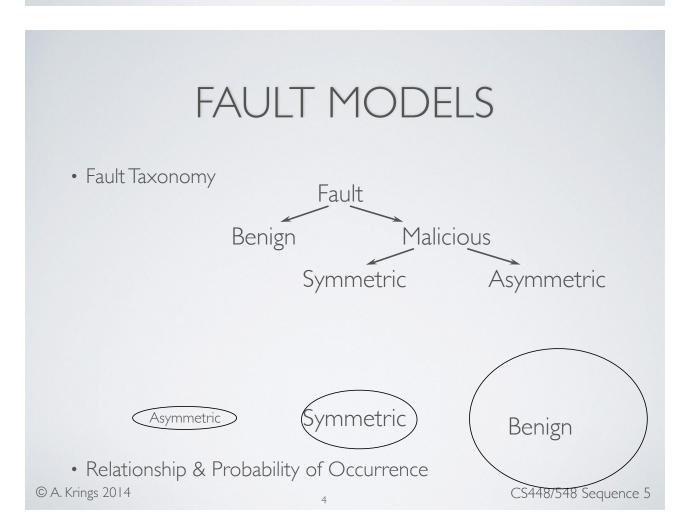
- Much work has been done on fault models. The discussion is based on the paper:
 - Thambidurai, P., and You-Keun Park, "Interactive Consistency with Multiple Failure Modes', Reliable Distributed Systems, Volume, Issue, 10-12 Oct 1988 Page(s):93 - 100. (Only read up to Section 3).
 - There is an interesting follow-up paper "Verification of Hybrid Byzantine Agreement Under Link Faults" by P. Lincoln and J. Rushby that addresses a problem in the algorithm of Thambidurai and Park

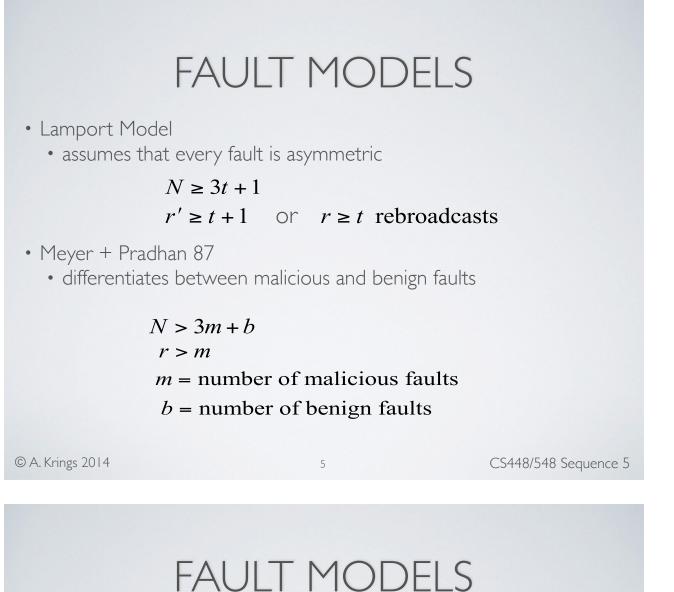
© A. Krings 2014

CS448/548 Sequence 5


FAULT MODELS

- Benign versus Malicious
 - Benign
 - error is self-evident
 - component does not undergo incorrect state transition during failure
 - examples:
 - omission fault
 - crash fault
 - timing fault
 - data out-of-bound

© A. Krings 2014


- Malicious
 - not self-evident to all non faulty receivers
 - can behave in two ways
 - symmetric
 - received identically by all processors
 - asymmetric
 - no restrictions of fault => anything goes
- Fault frequency
 - worse case every fault could behave asymmetric
 - best case all faults are benign
 - what is the best assumption for your system?

© A. Krings 2014

3

CS448/548 Sequence 5

- Thambidurai + Park 88
 - difference between malicious faults
 - symmetric faults
 - asymmetric faults
 - result:

$$N > 2a + 2s + b + r$$

$$r \ge a$$

- a = asym., s = sym., b = benign, r = rounds
- in general $a_{max} < s_{max} < b_{max}$
- or $\lambda_a << \lambda_s << \lambda_b$
- saves rounds and hardware

- Advantages of multi-fault model
 - I) more accurate model of the system
 - less "overly conservative"
 - 2) resulting reliabilities are better
 - custom tailor recovery mechanisms
 - Example:
 - consider Byzantine solution using OM() algorithm
 - assume N = 4, 5, 6
 - still, only one fault is covered using the OM algorithm

7

- moreover, the system reliability degrades
 - N = 6 results in worse reliability than N = 4
 - one is better off to turn the additional processors off!
- see paper Tha88, page 98, table 1

© A. Krings 2014

CS448/548 Sequence 5

FAULT MODELS Source: Tha 88

Model	N	P(Failure)	Faults		
BG	4	6.0×10^{-8}	1 arbitrary		
BG	5	1.0×10^{-7}	1 arbitrary		
BG	6	$1.5 imes 10^{-7}$	1 arbitrary		
UM	4	$6.0 imes 10^{-8}$	1 arbitrary, $b = 0$, $s = 0$		
UM	5	1.0×10^{-11}	1 arbitary, $b = 1, s = 0$		
UM	6	$2.0 imes10^{-11}$	1 arbitary, $b = 0, s = 1$		
UM	6	$1.1 imes 10^{-15}$	1 arbitary, $b = 2$, $s = 0$		

Table 1: Reliability data for Example 1

r = 1											
	a = 0				a = 1						
5	0	1	2	3	0	1	2	3			
b = 0		4	6	8	4	6	8	10			
b = 1	3	5	7	9	5	7	9	11			
b = 2	4	6	8	10	6	8	10	12			
b = 3	5	7	9	11	7	9	11	13			
b = 4	6	8	10	12	8	10	12	14			
b=5	7	9	11	13	9	11	13	15			
b = 6	8	10	12	14	10	12	14	16			

Table 2: Resiliency of a System based on the Unified Model (minimum number of processors required)

9

© A. Krings 2014

CS448/548 Sequence 5

FAULT MODELS

- 3) smarter degradation
 - we can specify the number of rounds
 - example using N = 11
 - let subscript <u>max</u> denote the maximum number of faults covered, assuming this is the <u>only</u> type of fault occurring.

• if
$$r = 1$$
 then $a_{max} = 1$ or $s_{max} = 4$

- if r = 2 then $a_{max} = 2$ or $s_{max} = 4$ why? $s_{max} = 4 \implies N > 2x4 + 2 \equiv 10$ $s_{max} = 5 \implies N < 2x5 + 2 \equiv 12$
- requirements for success
 - good estimate of fail rates λ_{a} , λ_{s} , λ_{b}

• typically $\lambda_a \ll \lambda_s \ll \lambda_b$

- good estimate of recovery rates ρ_{a} , ρ_{s} , ρ_{b}

© A. Krings 2014 • typically $\rho_a < \rho_s < \rho_b$ 10

CS448/548 Sequence 5

AGREEMENT ALGORITHMS

- Incomplete Interconnections
 - Lam82, Dol82
 - agreement only if the number of processors is less than 1/2 of the connectivity of the system's network.
- Eventual vs. Immediate Byz. Agreement (EBA,IBA)
 - recall interactive consistency conditions IC1, IC2
 - an agreement is <u>immediate</u> if in addition to IC1 and IC2 all correct processors also agree (during the round) on the round number at which they reach agreement.
 - otherwise the agreement is called eventual
 - each processor has decided on its value, but cannot synchronize its decision with that of the others until some later phase.
 - Thus, agreement may not always need full t+1 rounds

© A. Krings 2014

11

CS448/548 Sequence 5