
CS448/548 Sequence 3© A. Krings 2014

An Intrusion-Tolerant Approach
from reading assignment 2, the 2006 article by

Y. Deswarte and D. Powell
All material in this sequence was drawn from

the article.
1

INTERNET SECURITY

CS448/548 Sequence 3© A. Krings 2014

ARPANET
»What was its main motivation?
»What faults were considered?
»What security considerations were
considered?

2

CS448/548 Sequence 3© A. Krings 2014

•Limitations

•malicious attacks & intrusions were not
considered, e.g.,

•no authentication and thus no way to deal with
spoofing

•protocols include network maintenance, e.g.,
routing

3

CS448/548 Sequence 3© A. Krings 2014

•Attack types
•e.g., DoS, attacks against confidentiality (get
sensitive information), web defacing, ...

•Motivation
• sport, curiosity, vanity, vandalism, vengeance,
greed, political, strategic, ..., terrorism.

•Competence
• from recreational hacker to specialists
•criminal, ..., government warfare

4

CS448/548 Sequence 3© A. Krings 2014

•Many ways to attack

• sniffing, interception (destruction, insertion,
modification, replay)

•address falsifications, injection of counterfeit
network control messages,

•use Internet to find out published exploits

• ...

•unknown attack vector
5

CS448/548 Sequence 3© A. Krings 2014

•Conventional security techniques

• rely mainly on authentication

•and authorization

• (least privilege principle)

•uses detection which aim to detect and block
attempts to exceed privileges

•Does not work in the context of the Internet
6

CS448/548 Sequence 3© A. Krings 2014

• Issues

•Anybody (even anonymous users) has some
rights

•Many systems are accessible by public

•COTS OSs are exploitable (due to design flaws
etc.)

• Internet protocols designed when equipment was
expensive and intrusions were unlikely (30 years
ago)

•Economic pressures of ISPs
7

CS448/548 Sequence 3© A. Krings 2014

•Tolerating malicious act

• starting in the mid 80s, later projects include

•OASIS (Organically Assured and Survivable
Information Systems)

•MAFTIA (Malicious and Accidental Fault Tolerance
for Internet Applications)

8

CS448/548 Sequence 3© A. Krings 2014

•First key concept from dependability

• fault > error >failure view Intrusion as a Fault

• Intrusions as the result of an exploit

•They argue the error to be the result from an
intrusion (fault), which may cause system failure,
i.e., violation of system security policy

9

CS448/548 Sequence 3© A. Krings 2014

•Second key concept from dependability

• fault prevention

• fault tolerance

• fault removal

• fault forecasting

•Fault avoidance (prevention + removal)

•Fault acceptance (tolerance + forecasting)
10

CS448/548 Sequence 3© A. Krings 2014 11

Table 1
Classification of Security Methods

maintenance actions aimed at removing malicious logic
acting, or capable of acting, as attack agents (i.e., some
forms of malicious logic).

• Vulnerability removal: how to reduce the number or
severity of vulnerabilities. During system development,
this covers verification procedures such as formal proof,
model checking, and testing, specifically aimed at iden-
tifying flaws that could be exploited by an attacker.
Identified flaws may then be removed by correcting the
code. During system operation, vulnerability removal
corresponds to preventive and corrective maintenance
actions such as applying a security patch, withdrawing
a given service, changing a password, removal of mali-
cious logic implementing a trapdoor, etc.

We find no meaningful separable interpretation of fault re-
moval in terms of intrusions other than preventive and correc-
tive maintenance procedures aimed at removing attack agents
and vulnerabilities resulting from intrusions.

With respect to fault tolerance, equating attack, vulner-
ability and intrusion with fault does not lead to clearly dis-
tinguishable sets of methods. First, since an intrusion cannot
occur in the absence of vulnerability, intrusion tolerance and
vulnerability tolerance are equivalent in the sense that toler-
ance of an intrusion implies tolerance of the vulnerability or
vulnerabilities that were exploited to perpetrate the intrusion.
To conform to current usage, we will refer to intrusion toler-
ance. Note that the presence of vulnerabilities can be tolerated
if no attacks occur, so attack prevention and removal are also
a form of vulnerability tolerance. Similarly, attack tolerance
does not define a separate set of methods beyond vulnerability

prevention and removal, and intrusion tolerance. Hence, we
obtain one distinguishable set of fault-tolerance methods:

• Intrusion tolerance: how to provide correct service in
the presence of intrusions. Admitting that attack, vul-
nerability, and intrusion prevention measures are always
imperfect, intrusion tolerance aims to ensure that the
considered system provides security guarantees in spite
of partially successful attacks.

Fault forecasting refers to methods aimed at ranking or
evaluating the effectiveness of fault prevention, removal, and
tolerance techniques Equating attack, vulnerability, and in-
trusion with fault, we obtain three clearly distinguishable sets
of methods.

• Attack forecasting (human sense): how to estimate the
present number, the future incidence and the likely
consequences of (human) attacks. This includes intelli-
gence gathering, threat assessment, and attack warning.

• Attack forecasting (technical sense): how to estimate
the present number, the future incidence and the likely
consequences of (technical) attacks. This corresponds
to an assessment of the present number of latent attack
agents, and the future incidence and the likely conse-
quences of their activation.

• Vulnerability forecasting: how to estimate the present
number, the future incidence, and the likely conse-
quences of vulnerabilities. This includes the gathering
of statistics about the current state of knowledge
regarding system flaws, and the difficulties that an
attacker would have to overcome in order to take ad-
vantage of them.

DESWARTE AND POWELL: INTERNET SECURITY: AN INTRUSION-TOLERANCE APPROACH 435

CS448/548 Sequence 3© A. Krings 2014 12

•Fault prevention

•attack prevention (human sense)

•e.g. deterrence

•attach prevention (technical sense)

• security mechanisms

•vulnerability prevention

•e.g. applying good software engineering
practices (from formal specifications to
education)

CS448/548 Sequence 3© A. Krings 2014 13

•Fault removal
•attack removal (human sense)
•e.g. reduce number/severity of attacks,
countermeasures

•attach removal (technical sense)
•e.g. maintenance to remove malicious source
•vulnerability removal
•during system development (e.g. formal
verification) and operation (e.g. preventive
maintenance s.a. software patching)

CS448/548 Sequence 3© A. Krings 2014 14

•Fault forecasting
•attack forecasting (human sense)
•estimate present and future incidences, e.g. using
intelligence, threat assessment

•attach forecasting (technical sense)
•vulnerability forecasting
•Security risk analysis (all of the above)
•How well does this all work (or not)?

CS448/548 Sequence 3© A. Krings 2014

• Intrusion tolerance

•organize and manage a system such that an
intrusion in one part of the system has no
consequence on its overall security.

•common mode faults: same type of attack
succeeds in different parts of the system

•confidentiality: intrusion in one part of the system
should not reveal confidential data

15

CS448/548 Sequence 3© A. Krings 2014

•Tolerance based on intrusion detection

• Intrusion detection techniques

•don’t detect intrusions, but their effects

•anomaly detection

•misuse detection

16

CS448/548 Sequence 3© A. Krings 2014 17

Fig. 1. Intrusion detection paradigms.

tolerance: error handling (detection and recovery) and fault
handling (diagnosis, isolation, repair, reconfiguration).

A. Tolerance Based on Intrusion Detection

In the context of intrusions, specific detection techniques
have been developed. These have been named “intrusion de-
tection” techniques, but it should be noted that they do not
directly detect intrusions, but only their effects, i.e., the er-
rors due to intrusions (or even due to attacks which did not
successfully cause intrusions).

The so-called intrusion detection techniques may be di-
vided into two categories: anomaly detection and misuse de-
tection (see Fig. 1). Anomaly detection consists in comparing
the observed activity (for example, of a given user) with a ref-
erence “normal activity” (for the considered user). Any de-
viation between the two activities raises an alert. Conversely,
misuse detection consists in comparing the observed activity
with a reference defining known attack scenarios. Both types
of detection techniques are characterized by their proportions
of false alarms (known as false positives) and of undetected
intrusive activities (known as false negatives). In the case of
anomaly detection, one can generally adjust the “threshold”
or, by analogy with radar systems, the “gain” of the detector,
to choose a point of operation that offers the best compro-
mise between the proportions of false positives and false neg-
atives. On the other hand, misuse detection techniques have
the advantage of identifying specific attacks, with few false
positives. However, they only enable the detection of known
attack symptoms. In both cases, it should be noted that de-
tection is based on property checks.

To correct the damage caused by the intrusion, one
may, like in traditional fault tolerance, carry out backward
recovery (if one has taken the precaution of maintaining
up-to-date backups) or forward recovery (if one can rebuild
a healthy state), but it is often easier and more efficient
to mask errors, using some form of active (or modular)
redundancy.

B. Fragmentation, Redundancy, and Scattering

Several years ago, we developed an error masking tech-
nique, called fragmentation, redundancy, and scattering
(FRS), aimed at protecting sensitive data and computations
[12]. This technique exploits distribution of a computing
system to ensure that intrusion into part of the system cannot

compromise the confidentiality, integrity, and availability of
the system. Fragmentation consists of splitting the sensitive
data into fragments such that a single isolated fragment does
not contain any significant information (confidentiality).
The fragments are then replicated so that the modification
or the destruction of fragment replicas does not impede the
reconstruction of correct data (integrity and availability).
Finally, scattering aims to ensure that an intrusion only gives
access to isolated fragments. Scattering may be topological,
by using different data storage sites or by transmitting data
over independent communication channels, or temporal,
by transmitting fragments in a random order and possibly
adding false padding fragments. Scattering can also be
applied to privileges, by requiring the cooperation of several
persons with different privileges in order to carry out some
critical operation (separation of duty).

The FRS technique was originally developed in the
Delta-4 project [13] for file storage, security management
and data processing (see Fig. 2). For file storage, fragmen-
tation is carried out using simple cryptographic techniques
and fragment naming employs a secret key one-way func-
tion. The fragments are sent over the network in a random
order, which means that one of the hardest tasks for an
intruder would be to sort all the fragments into the right
order before being able to carry out cryptanalysis. For
security management, the principle resides in the distri-
bution of the authentication and authorization functions
between a set of sites administered by different people so
that failure of a few sites or misfeasance by a small number
of administrators do not endanger the security functions. On
these sites, nonsensitive data is replicated, whereas secret
data is fragmented using threshold cryptographic functions.
Finally, for data processing, two data types are considered:
1) numerical and logical data, whose semantics are defined
by the application, or 2) contextual data (e.g., character
strings) that is subjected only to simple operations (input,
display, concatenation, etc.). In this scheme, contextual
data is ciphered and deciphered only on a user site during
input and display. In contrast, context data is subjected to
successively finer fragmentation until the fragments do not
contain any significant information. This is achieved using
an object-oriented decomposition method.

VI. THE INTERNET CONTEXT

The techniques developed in Delta-4 are well adapted to
predominately homogeneous applications that are distributed
over an LAN. However, they are not directly transposable
to the Internet, especially when the concerned applications
involve mutually suspicious companies or organizations. In
this case, it is no longer possible to manage security in a ho-
mogeneous way. Here, we briefly outline two projects were
the tolerance approach has been adapted to account for the
inherent heterogeneity of the Internet.

A. The MAFTIA Project

The European project MAFTIA was directly aimed at
the development of intrusion-tolerant Internet applica-
tions [14]. Protocols and middleware were developed to

DESWARTE AND POWELL: INTERNET SECURITY: AN INTRUSION-TOLERANCE APPROACH 437

CS448/548 Sequence 3© A. Krings 2014

•FRS Fragmentation Redundancy & Scattering

•Fragmentation: split sensitive data into fragments

•Redundancy: without redundancy no recovery
after data corruption/loss, perhaps not even
detection.

•Scattering: topological, geographic, temporal.
Applies also to separation of duty (no centralized
control)

•FRS used in Delta-4 project
18

CS448/548 Sequence 3© A. Krings 2014 19Fig. 2. FRS in Delta-4.

Fig. 3. MAFTIA authorization scheme.

facilitate the management of fault-tolerant group communi-
cations (including tolerance of Byzantine faults), possibly
with real-time, confidentiality, and/or integrity constraints
[15]–[18]. In particular, the developed protocols and mid-
dleware enabled the implementation of trusted third parties
(TTPs) (e.g., a certification authority) that tolerate intrusions
(including administrator misfeasance) [19] through error
masking. Particular attention was also paid to intrusion de-
tection techniques distributed over Internet, since intrusion

detection not only contributes to intrusion tolerance, but is
itself an attractive target for attack. It is thus necessary to
organize the intrusion detection mechanisms in such a way
as to make them intrusion tolerant [20]. Furthermore, the
project developed an authorization scheme for multiparty
transactions involving mutually suspicious organizations
(see Fig. 3) [21].

An authorization server, implemented as an intrusion-tol-
erant TTP, checks whether each multiparty transaction is au-

438 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

CS448/548 Sequence 3© A. Krings 2014

•MAFTIA

•attempt at intrusion-tolerant Internet applications

•we will look at this later in detail

•one issue is that the intrusion detection
mechanism must be made intrusion tolerant itself

20

CS448/548 Sequence 3© A. Krings 2014

•MAFTIA authentication scheme

21

Fig. 2. FRS in Delta-4.

Fig. 3. MAFTIA authorization scheme.

facilitate the management of fault-tolerant group communi-
cations (including tolerance of Byzantine faults), possibly
with real-time, confidentiality, and/or integrity constraints
[15]–[18]. In particular, the developed protocols and mid-
dleware enabled the implementation of trusted third parties
(TTPs) (e.g., a certification authority) that tolerate intrusions
(including administrator misfeasance) [19] through error
masking. Particular attention was also paid to intrusion de-
tection techniques distributed over Internet, since intrusion

detection not only contributes to intrusion tolerance, but is
itself an attractive target for attack. It is thus necessary to
organize the intrusion detection mechanisms in such a way
as to make them intrusion tolerant [20]. Furthermore, the
project developed an authorization scheme for multiparty
transactions involving mutually suspicious organizations
(see Fig. 3) [21].

An authorization server, implemented as an intrusion-tol-
erant TTP, checks whether each multiparty transaction is au-

438 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

CS448/548 Sequence 3© A. Krings 2014

•DIT (Dependable Intrusion Tolerance) architecture

•web server that continues to provide correct
service in the presence of attacks

•diversification to avoid common mode fault

• servers isolated from Internet by proxies

22

CS448/548 Sequence 3© A. Krings 2014

•DIT architecture

23

Fig. 4. DIT architecture.

thorized. If that is so, the server generates the authorization
proofs that are necessary for the execution of each compo-
nent of the transaction (invocations on elementary objects).
On each of the sites participating in the authorization scheme,
a reference monitor, implemented on a JavaCard, checks that
each method invocation is accompanied by a valid authoriza-
tion proof. The scheme is intrusion tolerant in the sense that
the corruption of a participating site does not allow the in-
truder to obtain any additional privileges regarding objects
residing on other sites.

B. The DIT Project

In cooperation with SRI International, we are participating
in the development of the Dependable Intrusion Tolerance
(DIT) architecture [22]. The objective is to be able to build
Web servers that continue to provide correct service in the
presence of attacks. For this type of application, confiden-
tiality is not essential, but integrity and availability must be
ensured, even if the system is under attack from competent
attackers. It is thus essential that a successful attack on one
component of the system should not facilitate attacks on
other components. The architecture design is thus centered
on a diversification approach (Fig. 4).

The architecture is composed of a pool of ordinary Web
servers, using as much diversification as possible at the hard-
ware level (Sparc, Pentium, PowerPC, etc.), the operating
system level (Solaris, Microsoft Windows, Linux, MacOS,
etc.), and Web application software level (Apache, IIS, En-
terprise Server, Openview Server, etc.). Only the content of
the Web pages is identical on each server. There are suf-
ficient application servers at a given redundancy level (see
below) to ensure an adequate response time for the nominal
request rate. The servers are isolated from the Internet by

proxies, which are implemented by purpose-built software
executed on diversified hardware. Requests from the Internet,
filtered by a firewall, are taken into account by one of the
proxies acting as a leader. The leader distributes the requests
to multiple Web servers and checks the corresponding re-
sponses before returning them to the request initiator. The
backup proxies monitor the behavior of the leader by ob-
serving the firewall/proxy and proxy/server networks. If they
detect a failure of the leader, they elect a new leader from
among themselves. The proxies also process alarms from in-
trusion detection sensors placed on the Web servers and on
both networks.

Depending on the current level of alert, the leader sends
each request to one server (simplex mode), two servers
(duplex mode), three servers (triplex mode), or all available
servers. Each server prepares its response, then computes an
MD5 cryptographic checksum of this response and sends
it to the leader. In simplex mode, the server also sends its
response to the leader, which recomputes the checksum and
compares it to the one sent by the server. In duplex mode, the
leader compares the two checksums from the servers and,
if they concur, requests one the responses, which is verified
by recomputing the checksum. In triplex or all-available
modes, the checksums are subjected to a majority vote, and
the response is requested from one of the majority servers.

The alert level is defined as either a function of recent
alarms triggered by the intrusion detection mechanisms or
other error detection mechanisms (result cross checking, in-
tegrity tests, etc.), or by information sent by external sources
(CERTs, other trusted centers, etc.). The redundancy level
is raised toward a more severe mode as soon as alarms are
received, but is lowered to a less severe mode when failed
components have been diagnosed and repaired, and when the

DESWARTE AND POWELL: INTERNET SECURITY: AN INTRUSION-TOLERANCE APPROACH 439

CS448/548 Sequence 3© A. Krings 2014

•Summary

• this was another general article pointing out
general principles that will help towards building
systems that can tolerate maliciously induced
faults

24

