
CS448/548 Sequence 1© A. Krings 2014

SURVIVABLE SYSTEMS &
NETWORKS

Axel Krings, PhD
JEB 320, phone 885-4078

krings@uidaho.edu

1

CS448/548 Sequence 1© A. Krings 2014

General rules of this course…
Your responsibilities
Including other people’s materials
Plagiarism

INTRODUCTION

2

CS448/548 Sequence 1© A. Krings 2014

• What are Survivable Systems and Networks?
• What are the characteristics?
• Where do we need Survivable Systems and
Networks?

INTRODUCTION

3

CS448/548 Sequence 1© A. Krings 2014

• Survivable Systems

• Intrusion Tolerant Systems

• Resilient Systems

• Fault-tolerant Systems

• These terms are not identical, but they have so much in
common. In this class we will cover topics from all and you will
see that often you may not be sure anymore which term the
articles you read relates to the most.

TERMS AND DEFINITIONS

4

CS448/548 Sequence 1© A. Krings 2014

What is Fault-tolerance?
Let’s consider the paper

• Fault-Tolerant Computing: Fundamental Concepts, by
Victor P. Nelson

• This is not a comprehensive review of all the topics,
but a good quick “primer”

• It is your responsibility to read the paper! We will
have only a brief discussion about it in class.

5

CS448/548 Sequence 1© A. Krings 2014

Faults, Errors and Failures
•What is the difference?
•Examples of faults,

• Stuck-at, bridging fault
• Fault properties

• Transient, intermittent, permanent
• Fault models

• Benign, symmetric, asymmetric, …
•Fault assumptions

• Common mode vs. independence of faults

6

CS448/548 Sequence 1© A. Krings 2014

• Evaluating dependability and fault tolerance
• What is dependability anyway?
• Reliability
• Unreliability
• Availability
• Maintainability
• “illities”

7

CS448/548 Sequence 1© A. Krings 2014

•MTTF and MTBF
• Mean Time to&between Failure

•Bathtub curve
• What is it and why do we care about it?
• Is it relevant to malicious act?
• How does it relate to R(t)?
• What are the statistical and practical assumptions?

8

CS448/548 Sequence 1© A. Krings 2014

•Fault-tolerance Strategies
•Masking
•Detection
•Containment
•Diagnosis
•Repair/Reconfiguration
•Recovery

•Descriptions are in the paper
9

CS448/548 Sequence 1© A. Krings 2014

Data in Data in

I J.

$ indication

Data out

Error
indication I

Data out

(b)

Figure 1. Replicated lockstep operation of modules with redundant outputs
checked in each clock cycle: (a) logic compared externally; (b) logic compared
on chip.

Within a single word, the number of
errors detectable or correctable by a given
code is related to the minimum separation
or Hamming distance between the words
of the code space. The distance is the
minimum number of bit positions by which
any two words from the code space differ.
If two words differ by only one bit posi-
tion, then an error in that bit transforms one
word into the other. If the minimum dis-
tance is 2, a single error can produce only
a noncode word, with at least two errors
required to transform one code word into
another. If the minimum separation is 3,
any noncode word produced by a single
error is distance 1 from the original code
word and at least 2 from any other code
word, allowing the original word to be
uniquely identified.

Larger separations permit detection and/
or correction of greater numbers of errors,
generally by increasing the size of the
noncode space (2m+k) relative to that of the
code space (2”), making it more likely that
errors will result in noncode words. The
cost of this increased coverage is usually a
lower code efficiency (code bits versus
total bits) or a more complex encoding
algorithm.

Error detection and correction codes
vary widely in detection and correction
properties, encoding and decoding com-
plexity, and code efficiency. The most
common codes include simple parity
checks to detect errors in buses, memory,

and registers. Parity-based Hamming
codes detect and correct errors in memory;
cyclic redundancy checks and other cyclic
codes detect and correct errors in commu-
nications channels and disk storage; m-
out-of-n codes detect errors in micropro-
gram control stores and other ROMs; and
arithmetic codes detect errors originating
within arithmetic logic units.

Many computer memory subsystems
include single-error correction and
double-error detection using inexpensive
Hamming-code-based support chips that
efficiently encode and decode words dur-
ing memory operations. Other commercial
very large scale integration components
include parity generators for buses and
storage elements, and encoding/decoding
circuits for disk drives, tapes, networks,
and other communications channels. Some
new VLSI components incorporate on-
chip parity generation and checking logic;
for example, the Advanced Micro Devices
Am29300 chip set generates and checks
parity on data paths to and from the device,
and on internal data paths. In addition,
several recent VLSI memories incorporate
on-chip error detection and correction to
mask memory cell faults arising in manu-
facturing or normal operation.

Self-checking logic. Self-checking
logic designs detect faulty logic circuits,6
especially in code checkers and other cir-
cuits that could be single points of failure

in a ~ y s t e m . ~ (Several experimental VLSI
designs have been implemented entirely
with self-checking circuits.) Each self-
checking circuit has coded inputs and out-
puts, typically in the form of 2-bit “dual-
rail” logic, which has two valid code words
and two noncode words for each logic line.
A circuit is classified as fault secure if, for
any specified fault within the circuit, the
circuit never produces an incorrect output
code word when stimulated by a correct
input code word. A self-testing circuit, on
the other hand, outputs a noncode word for
at least one code word input for each pos-
sible fault. A totally self-checking circuit
has properties of both fault-secure and self-
testing circuits; hence, no internal fault can
convert an erroneous input into a valid
output, and at least one normally occurring
input will detect each possible internal
fault.

Module replication for error detec-
tion and masking. With circuits that gen-
erate or transform information, complete
module replication is often the only cost-
effective approach for error detection and
correction. Figure 1 shows the most
straightforward approach to error detec-
tion: The outputs of identical modules
operating in lockstep are compared. Sev-
eral commercial transaction-processing
systems have been built around pairs of
off-the-shelf microprocessors with com-
parator circuits at their bus interfaces to
detect processor faults (Figure la).

Simple disagreement detection indi-
cates a fault but cannot identify the faulty
unit. The system must be interrupted for
further diagnosis. Continuous operation
can be attained by using additional error-
detection mechanisms to make the dupli-
cated modules self-checking, as in the
AT&T 3A electronic switching system
processor, which uses self-checking logic
circuits? Figure 2a shows that when one
module signals an error, it can be disabled
while the other module continues to supply
correct information, effectively masking
the fault in the failed unit. Normally the
disagreement detector between modules is
eliminated and all errors are assumed to be
detected within the redundant modules.
Figure 2b shows how self-checking mod-
ules can be built with off-the-shelf compo-
nents: One of the configurations of Figure
1 is duplicated, so four units and two
comparators are needed for continuous
fault masking. This approach has been
used in the Stratus computer family and
other systems.

Continuous operation is often provided

22 COMPUTER

10

CS448/548 Sequence 1© A. Krings 2014

by using the majority vote ofthe outputs of
three or more identical modules, masking
failures of the minority. Triple modular
redundancy has been used extensively in
ultrareliable systems for aerospace and
industrial applications, with two out of
three votes masking single-module fail-
ures. Additional fault coverage can be at-
tained with N modules by deploying them
in a hybrid modular-redundant configura-
tion, in which failed modules are replaced
within a triple modular-redundant core
configuration. Hybrid modular-redundant
configurations can mask failures of all but
two modules. compared with a simple
minority in M-out-of-N majority-voting
systems.

A significant problem with module rep-
lication is synchronization of the redun-
dant modules. If comparison or voting is
done in hardware, tight coupling of the
redundant modules is needed toensure that
comparison or voting takes place o n valid
data samples. Fault-tolerant clocking
schemes and other means of synchroniza-
tion have been studied extensively, and
several recent commercial VLSI chips
include on-chip support for duplex, mas-
ter/checker operation. Figure 1 b shows
paired master and checker chips operating
in lockstep, with all corresponding pins
connected to the same input/output lines.
Both chips receive all inputs and perform
all operations. The output lines are driven
only by the master. with output also routed
into the corresponding pins of the checker
to on-chip comparators for comparison
with values produced by the checker. The
result is indicated by a match or an error
signa I.

An alternative to tight coupling is to
compare only selected outputs from
loosely synchronized units. In the SIFT
system,' critical-process outputs are ex-
changed by the redundant processors in
each process step and compared in subse-
quent process steps by a software voter. In
the space shuttle, selected data values are
mathematically combined into "compare
words," which are periodically exchanged
and compared by software in four redun-
dant processors.x

Voters and comparators, although typi-
cally much more reliable than the redun-
dant modules they protect, represent po-
tential single-failure points in replicated
systems. Fault tolerance and reliability can
be increased by replicating the compara-
tors or voters, usually at the module inputs,
as in the triple modular-redundant system
stage of Figure 3. Failure of any single
voter or the module to which its output is

- -

Input B
Input A

lrput c I :

Module Module Module Module
A1 A2 61 8 2

Error A Error B

Continuous
I

(b) output

v Module Output A A

1

Figure 2. Continuous operation with duplex self-checking modules: (a) two self-
checked modules; (b) four simple modules as two self-checked pairs.

connected is masked by the voters at subse-
quent module inputs. Redundancy
schemes have also been extended to many
nondigital devices (motors, actuators,
sensors) used in redundant systems to
minimize the number of single-failure
points.

Protocol and timing checks. The be-
havior ofmost sequential logic circuits and
systems can be described by state ma-
chines or other protocols. Protocol vari-
ation resulting from a fault can be detected
several ways without massive replication
of modules.' Selected process states or
module outputs can be compared with

predicted values or other heuristic infor-
mation, generated by alternative algo-
rithms or off-line units. Data values can be
checked for proper structure or consis-
tency with previous or predicted values.
Handshaking sequences between elements
involved in data transfers can be moni-
tored by hardware or software, especially
over buses and network links. Operational
"capabilities,"- the activities allowed by
various processes - can be verified be-
fore allowing an operation on a critical re-
source. Such approaches often reduce
hardware redundancy requirements but
may be more difficult to implement, re-
quiring application-specific information

n -
Module Output B

Module output c - C v .
U U

Inputs from Majority Redundant outputs to
previous stage voters modules next stage

Figure 3. Triplicated voters and modules forming one triple modular-redundant
stage of a system, with voting at module inputs.

July 1990 2 3

11

CS448/548 Sequence 1© A. Krings 2014

by using the majority vote ofthe outputs of
three or more identical modules, masking
failures of the minority. Triple modular
redundancy has been used extensively in
ultrareliable systems for aerospace and
industrial applications, with two out of
three votes masking single-module fail-
ures. Additional fault coverage can be at-
tained with N modules by deploying them
in a hybrid modular-redundant configura-
tion, in which failed modules are replaced
within a triple modular-redundant core
configuration. Hybrid modular-redundant
configurations can mask failures of all but
two modules. compared with a simple
minority in M-out-of-N majority-voting
systems.

A significant problem with module rep-
lication is synchronization of the redun-
dant modules. If comparison or voting is
done in hardware, tight coupling of the
redundant modules is needed toensure that
comparison or voting takes place o n valid
data samples. Fault-tolerant clocking
schemes and other means of synchroniza-
tion have been studied extensively, and
several recent commercial VLSI chips
include on-chip support for duplex, mas-
ter/checker operation. Figure 1 b shows
paired master and checker chips operating
in lockstep, with all corresponding pins
connected to the same input/output lines.
Both chips receive all inputs and perform
all operations. The output lines are driven
only by the master. with output also routed
into the corresponding pins of the checker
to on-chip comparators for comparison
with values produced by the checker. The
result is indicated by a match or an error
signa I.

An alternative to tight coupling is to
compare only selected outputs from
loosely synchronized units. In the SIFT
system,' critical-process outputs are ex-
changed by the redundant processors in
each process step and compared in subse-
quent process steps by a software voter. In
the space shuttle, selected data values are
mathematically combined into "compare
words," which are periodically exchanged
and compared by software in four redun-
dant processors.x

Voters and comparators, although typi-
cally much more reliable than the redun-
dant modules they protect, represent po-
tential single-failure points in replicated
systems. Fault tolerance and reliability can
be increased by replicating the compara-
tors or voters, usually at the module inputs,
as in the triple modular-redundant system
stage of Figure 3. Failure of any single
voter or the module to which its output is

- -

Input B
Input A

lrput c I :

Module Module Module Module
A1 A2 61 8 2

Error A Error B

Continuous
I

(b) output

v Module Output A A

1

Figure 2. Continuous operation with duplex self-checking modules: (a) two self-
checked modules; (b) four simple modules as two self-checked pairs.

connected is masked by the voters at subse-
quent module inputs. Redundancy
schemes have also been extended to many
nondigital devices (motors, actuators,
sensors) used in redundant systems to
minimize the number of single-failure
points.

Protocol and timing checks. The be-
havior ofmost sequential logic circuits and
systems can be described by state ma-
chines or other protocols. Protocol vari-
ation resulting from a fault can be detected
several ways without massive replication
of modules.' Selected process states or
module outputs can be compared with

predicted values or other heuristic infor-
mation, generated by alternative algo-
rithms or off-line units. Data values can be
checked for proper structure or consis-
tency with previous or predicted values.
Handshaking sequences between elements
involved in data transfers can be moni-
tored by hardware or software, especially
over buses and network links. Operational
"capabilities,"- the activities allowed by
various processes - can be verified be-
fore allowing an operation on a critical re-
source. Such approaches often reduce
hardware redundancy requirements but
may be more difficult to implement, re-
quiring application-specific information

n -
Module Output B

Module output c - C v .
U U

Inputs from Majority Redundant outputs to
previous stage voters modules next stage

Figure 3. Triplicated voters and modules forming one triple modular-redundant
stage of a system, with voting at module inputs.

July 1990 2 3
12

