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General rules of this course…
Your responsibilities
Including other people’s materials
Plagiarism 

INTRODUCTION
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• What are Survivable Systems and Networks?
• What are the characteristics?
• Where do we need Survivable Systems and 
Networks?

INTRODUCTION
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• Survivable Systems

• Intrusion Tolerant Systems

• Resilient Systems

• Fault-tolerant Systems

• These terms are not identical, but they have so much in 
common. In this class we will cover topics from all and you will 
see that often you may not be sure anymore which term the 
articles you read relates to the most.

TERMS AND DEFINITIONS
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What is Fault-tolerance?
Let’s consider the paper

• Fault-Tolerant Computing: Fundamental Concepts, by 
Victor P. Nelson

• This is not a comprehensive review of all the topics, 
but a good quick “primer”

• It is your responsibility to read the paper!  We will 
have only a brief discussion about it in class.
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Faults, Errors and Failures
•What is the difference?
•Examples of faults, 

• Stuck-at, bridging fault
• Fault properties

• Transient, intermittent, permanent
•  Fault models

• Benign, symmetric, asymmetric, …
•Fault assumptions

• Common mode vs. independence of faults
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• Evaluating dependability and fault tolerance
• What is dependability anyway?
• Reliability
• Unreliability
• Availability
• Maintainability
• “illities”
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•MTTF and MTBF
• Mean Time to&between Failure

•Bathtub curve
• What is it and why do we care about it?
• Is it relevant to malicious act?
• How does it relate to R(t)?
• What are the statistical and practical assumptions?
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•Fault-tolerance Strategies
•Masking
•Detection
•Containment
•Diagnosis
•Repair/Reconfiguration
•Recovery

•Descriptions are in the paper
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Figure 1. Replicated lockstep operation of modules with redundant outputs 
checked in each clock cycle: (a) logic compared externally; (b) logic compared 
on chip. 

Within a single word, the number of 
errors detectable or correctable by a given 
code is related to the minimum separation 
or Hamming distance between the words 
of the code space. The distance is the 
minimum number of bit positions by which 
any two words from the code space differ. 
If two words differ by only one bit posi- 
tion, then an error in that bit transforms one 
word into the other. If the minimum dis- 
tance is 2, a single error can produce only 
a noncode word, with at least two errors 
required to transform one code word into 
another. If the minimum separation is 3, 
any noncode word produced by a single 
error is distance 1 from the original code 
word and at least 2 from any other code 
word, allowing the original word to be 
uniquely identified. 

Larger separations permit detection and/ 
or correction of greater numbers of errors, 
generally by increasing the size of the 
noncode space (2m+k) relative to that of the 
code space (2”), making it more likely that 
errors will result in noncode words. The 
cost of this increased coverage is usually a 
lower code efficiency (code bits versus 
total bits) or a more complex encoding 
algorithm. 

Error detection and correction codes 
vary widely in detection and correction 
properties, encoding and decoding com- 
plexity, and code efficiency. The most 
common codes include simple parity 
checks to detect errors in buses, memory, 

and registers. Parity-based Hamming 
codes detect and correct errors in memory; 
cyclic redundancy checks and other cyclic 
codes detect and correct errors in commu- 
nications channels and disk storage; m- 
out-of-n codes detect errors in micropro- 
gram control stores and other ROMs; and 
arithmetic codes detect errors originating 
within arithmetic logic units. 

Many computer memory subsystems 
include single-error correction and 
double-error detection using inexpensive 
Hamming-code-based support chips that 
efficiently encode and decode words dur- 
ing memory operations. Other commercial 
very large scale integration components 
include parity generators for buses and 
storage elements, and encoding/decoding 
circuits for disk drives, tapes, networks, 
and other communications channels. Some 
new VLSI components incorporate on- 
chip parity generation and checking logic; 
for example, the Advanced Micro Devices 
Am29300 chip set generates and checks 
parity on data paths to and from the device, 
and on internal data paths. In addition, 
several recent VLSI memories incorporate 
on-chip error detection and correction to 
mask memory cell faults arising in manu- 
facturing or normal operation. 

Self-checking logic. Self-checking 
logic designs detect faulty logic circuits,6 
especially in code checkers and other cir- 
cuits that could be single points of failure 

in a ~ y s t e m . ~  (Several experimental VLSI 
designs have been implemented entirely 
with self-checking circuits.) Each self- 
checking circuit has coded inputs and out- 
puts, typically in the form of 2-bit “dual- 
rail” logic, which has two valid code words 
and two noncode words for each logic line. 
A circuit is classified as fault secure if, for 
any specified fault within the circuit, the 
circuit never produces an incorrect output 
code word when stimulated by a correct 
input code word. A self-testing circuit, on 
the other hand, outputs a noncode word for 
at least one code word input for each pos- 
sible fault. A totally self-checking circuit 
has properties of both fault-secure and self- 
testing circuits; hence, no internal fault can 
convert an erroneous input into a valid 
output, and at least one normally occurring 
input will detect each possible internal 
fault. 

Module replication for error detec- 
tion and masking. With circuits that gen- 
erate or transform information, complete 
module replication is often the only cost- 
effective approach for error detection and 
correction. Figure 1 shows the most 
straightforward approach to error detec- 
tion: The outputs of identical modules 
operating in lockstep are compared. Sev- 
eral commercial transaction-processing 
systems have been built around pairs of 
off-the-shelf microprocessors with com- 
parator circuits at their bus interfaces to 
detect processor faults (Figure la). 

Simple disagreement detection indi- 
cates a fault but cannot identify the faulty 
unit. The system must be interrupted for 
further diagnosis. Continuous operation 
can be attained by using additional error- 
detection mechanisms to make the dupli- 
cated modules self-checking, as in the 
AT&T 3A electronic switching system 
processor, which uses self-checking logic 
circuits? Figure 2a shows that when one 
module signals an error, it can be disabled 
while the other module continues to supply 
correct information, effectively masking 
the fault in the failed unit. Normally the 
disagreement detector between modules is 
eliminated and all errors are assumed to be 
detected within the redundant modules. 
Figure 2b shows how self-checking mod- 
ules can be built with off-the-shelf compo- 
nents: One of the configurations of Figure 
1 is duplicated, so four units and two 
comparators are needed for continuous 
fault masking. This approach has been 
used in the Stratus computer family and 
other systems. 

Continuous operation is often provided 

22 COMPUTER 
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by using the majority vote ofthe outputs of 
three or more identical modules, masking 
failures of the minority. Triple modular 
redundancy has been used extensively in 
ultrareliable systems for aerospace and 
industrial applications, with two out of 
three votes masking single-module fail- 
ures. Additional fault coverage can be at- 
tained with N modules by deploying them 
in a hybrid modular-redundant configura- 
tion, in which failed modules are replaced 
within a triple modular-redundant core 
configuration. Hybrid modular-redundant 
configurations can mask failures of all but 
two modules. compared with a simple 
minority in M-out-of-N majority-voting 
systems. 

A significant problem with module rep- 
lication is synchronization of the redun- 
dant modules. If comparison or voting is 
done in hardware, tight coupling of the 
redundant modules is needed toensure that 
comparison or voting takes place o n  valid 
data samples.  Fault-tolerant clocking 
schemes and other means of synchroniza- 
tion have been studied extensively, and 
several recent commercial VLSI chips 
include on-chip support for duplex, mas- 
ter/checker operation. Figure 1 b shows 
paired master and checker chips operating 
in lockstep, with all corresponding pins 
connected to the same input/output lines. 
Both chips receive all inputs and perform 
all operations. The output lines are driven 
only by the master. with output also routed 
into the corresponding pins of the checker 
to on-chip comparators for comparison 
with values produced by the checker. The 
result is indicated by a match or an error 
signa I. 

An alternative to tight coupling is to 
compare only selected outputs from 
loosely synchronized units. In the SIFT 
system,' critical-process outputs are ex- 
changed by the redundant processors in 
each process step and compared in subse- 
quent process steps by a software voter. In 
the space shuttle, selected data values are 
mathematically combined into "compare 
words," which are periodically exchanged 
and compared by software in four redun- 
dant processors.x 

Voters and comparators, although typi- 
cally much more reliable than the redun- 
dant modules they protect, represent po- 
tential single-failure points in replicated 
systems. Fault tolerance and reliability can 
be increased by replicating the compara- 
tors or voters, usually at the module inputs, 
as in the triple modular-redundant system 
stage of Figure 3. Failure of any single 
voter or the module to which its output is 
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Figure 2. Continuous operation with duplex self-checking modules: (a) two self- 
checked modules; (b) four simple modules as two self-checked pairs. 

connected is masked by the voters at subse- 
quent  module inputs.  Redundancy 
schemes have also been extended to many 
nondigital devices (motors,  actuators, 
sensors) used in redundant systems to 
minimize the number of single-failure 
points. 

Protocol and timing checks. The be- 
havior ofmost sequential logic circuits and 
systems can be described by state ma- 
chines or other protocols. Protocol vari- 
ation resulting from a fault can be detected 
several ways without massive replication 
of modules.' Selected process states or 
module outputs can be compared with 

predicted values or other heuristic infor- 
mation, generated by alternative algo- 
rithms or off-line units. Data values can be 
checked for proper structure or consis- 
tency with previous or predicted values. 
Handshaking sequences between elements 
involved in data transfers can be moni- 
tored by hardware or software, especially 
over buses and network links. Operational 
"capabilities,"- the activities allowed by 
various processes - can be verified be- 
fore allowing an operation on a critical re- 
source. Such approaches often reduce 
hardware redundancy requirements but 
may be more difficult to implement, re- 
quiring application-specific information 

n - 
Module Output B 

Module output c - C v .  
U U 

Inputs from Majority Redundant outputs to 
previous stage voters modules next stage 

Figure 3. Triplicated voters and modules forming one triple modular-redundant 
stage of a system, with voting at module inputs. 
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by using the majority vote ofthe outputs of 
three or more identical modules, masking 
failures of the minority. Triple modular 
redundancy has been used extensively in 
ultrareliable systems for aerospace and 
industrial applications, with two out of 
three votes masking single-module fail- 
ures. Additional fault coverage can be at- 
tained with N modules by deploying them 
in a hybrid modular-redundant configura- 
tion, in which failed modules are replaced 
within a triple modular-redundant core 
configuration. Hybrid modular-redundant 
configurations can mask failures of all but 
two modules. compared with a simple 
minority in M-out-of-N majority-voting 
systems. 

A significant problem with module rep- 
lication is synchronization of the redun- 
dant modules. If comparison or voting is 
done in hardware, tight coupling of the 
redundant modules is needed toensure that 
comparison or voting takes place o n  valid 
data samples.  Fault-tolerant clocking 
schemes and other means of synchroniza- 
tion have been studied extensively, and 
several recent commercial VLSI chips 
include on-chip support for duplex, mas- 
ter/checker operation. Figure 1 b shows 
paired master and checker chips operating 
in lockstep, with all corresponding pins 
connected to the same input/output lines. 
Both chips receive all inputs and perform 
all operations. The output lines are driven 
only by the master. with output also routed 
into the corresponding pins of the checker 
to on-chip comparators for comparison 
with values produced by the checker. The 
result is indicated by a match or an error 
signa I. 

An alternative to tight coupling is to 
compare only selected outputs from 
loosely synchronized units. In the SIFT 
system,' critical-process outputs are ex- 
changed by the redundant processors in 
each process step and compared in subse- 
quent process steps by a software voter. In 
the space shuttle, selected data values are 
mathematically combined into "compare 
words," which are periodically exchanged 
and compared by software in four redun- 
dant processors.x 

Voters and comparators, although typi- 
cally much more reliable than the redun- 
dant modules they protect, represent po- 
tential single-failure points in replicated 
systems. Fault tolerance and reliability can 
be increased by replicating the compara- 
tors or voters, usually at the module inputs, 
as in the triple modular-redundant system 
stage of Figure 3. Failure of any single 
voter or the module to which its output is 
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checked modules; (b) four simple modules as two self-checked pairs. 

connected is masked by the voters at subse- 
quent  module inputs.  Redundancy 
schemes have also been extended to many 
nondigital devices (motors,  actuators, 
sensors) used in redundant systems to 
minimize the number of single-failure 
points. 

Protocol and timing checks. The be- 
havior ofmost sequential logic circuits and 
systems can be described by state ma- 
chines or other protocols. Protocol vari- 
ation resulting from a fault can be detected 
several ways without massive replication 
of modules.' Selected process states or 
module outputs can be compared with 

predicted values or other heuristic infor- 
mation, generated by alternative algo- 
rithms or off-line units. Data values can be 
checked for proper structure or consis- 
tency with previous or predicted values. 
Handshaking sequences between elements 
involved in data transfers can be moni- 
tored by hardware or software, especially 
over buses and network links. Operational 
"capabilities,"- the activities allowed by 
various processes - can be verified be- 
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source. Such approaches often reduce 
hardware redundancy requirements but 
may be more difficult to implement, re- 
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