CS 420/520 Data Communication Systems

Course Overview

-Instructor:

- Dr. Axel Krings
- Office, JEB 320
- Office Hours to be announced, or by appointment
- krings@uidaho.edu, (208) 885-4078
- http://www.cs.uidaho.edu/~krings/CS420

—Text:

 Data and Computer Communications, William Stallings, Prentice Hall.

—Grading:

- CS420: Assignments, Three Exams
- CS520: Assignments, Three Exams, Term Project

Page 1 Sequence 1

Syllabus and Scope of Course

- We will cover most of the chapters with selected topics from other sources
- This course will introduce you to the concepts, terminology, and approaches used in data communication systems.
- I expect you to walk away from this class being familiar with a wide variety of concepts and protocols (and detailed knowledge of some of them). In the future you should be able to use this knowledge to:
 - make intelligent decisions about network use, design and management,
 - be able to pick up and learn details of a particular system as you need it
 - be able to quickly find protocol descriptions and problem solutions/discussions
 - be able to discuss data communication systems with supervisors and co-workers on the job

Page 2 Sequence 1

Figure 1.1 Average Downstream Traffic per Internet Subscriber

Page 3 Sequence 1

Technological Advancement Driving Forces

Development of new services

Advances in technology

Traffic growth at a high and steady rate

Page 4 Sequence 1

Notable Trends

Trend toward faster and cheaper, in both computing and communication

- More powerful computers supporting more demanding applications
- The increasing use of optical fiber and highspeed wireless has brought transmission prices down and greatly increased capacity

Today's networks are more "intelligent"

- Differing levels of quality of service (QoS)
- Variety of customizable services in the areas of network management and security

The Internet, the Web, and associated applications have emerged as dominant features for both business and personal network landscapes

- "Everything over IP"
- Intranets and extranets are being used to isolate proprietary information

Mobility

- iPhone, Droid, and iPad have become drivers of the evolution of business networks and their use
- Enterprise applications are now routinely delivered on mobile devices
- Cloud computing is being embraced

A Communications Model

- Source
 - —generates data to be transmitted
- Transmitter
 - —Converts data into transmittable signals
- Transmission System
 - —Carries data
- Receiver
 - —Converts received signal into data
- Destination
 - —Takes incoming data

Simplified Communications Model - Diagram

(a) General block diagram

(b) Example

Communications Tasks

Transmission system utilization

Interfacing

Signal generation

Synchronization

Exchange management

Error detection and correction

Flow control

Addressing

Routing

Recovery

Message formatting

Security

Network management

Page 8 Sequence 1

Simplified Data Communications Model

Page 9 Sequence 1

Transmission

Lines

The basic building block of any communications facility is the transmission line

The business manager is concerned with a facility providing the required capacity, with acceptable reliability, at minimum cost

Capacity

Reliability

Cost

Transmission Line

Page 10 Sequence 1

Transmission Mediums

Two mediums currently driving the evolution of data communications transmission are:

Fiber optic transmissions and

Wireless transmissions

Transmission Services

- Remain the most costly component of a communications budget
- Two major approaches to greater efficiency:

Compression

Squeezing the data down so that a lower-capacity, cheaper transmission facility can be used

Page 12

Networking

Advances in technology have led to greatly increased capacity and the concept of integration, allowing equipment and networks to work simultaneously

Networking

- Point to point communication not usually practical
 - —Devices are too far apart
 - Large set of devices would need impractical number of connections
- Solution is a communications network, e.g.,
 - —Wide Area Network (WAN)
 - —Local Area Network (LAN)

Page 14 Sequence 1

Wide Area Networks

- Large geographical area
- Crossing public rights of way
- Rely in part on common carrier circuits
- Alternative technologies
 - —Circuit switching
 - —Packet switching
 - —Frame relay
 - —Asynchronous Transfer Mode (ATM)

Page 15 Sequence 1

Circuit Switching

- Dedicated communications path established for the duration of the conversation
- e.g., telephone network

Page 16 Sequence 1

Packet Switching

- Small "chunks" (packets) of data at a time
- Data sent may be out of sequence
- Packets passed from node to node between source and destination
- Used for terminal to computer and computer to computer communications

Page 17 Sequence 1

Frame Relay

- Packet switching systems have large overhead to compensate for errors
- Modern systems are more reliable
- Errors can be caught in end system
- Most overhead for error control is stripped out

Page 18 Sequence 1

Asynchronous Transfer Mode

- ATM
- Evolution of frame relay
- Little overhead for error control
- Fixed packet (called cell) length
- Anything from Mbps to Gbps
- Constant data rate using packet switching technique

Page 19 Sequence 1

Local Area Networks

- Smaller scope
 - —Building or small campus
- Usually owned by same organization as attached devices
- Data rates much higher
- Usually broadcast systems
- Now some switched systems and ATM are being introduced

Page 20 Sequence 1

Metropolitan Area Networks

- MAN
- Middle ground between LAN and WAN
- Private or public network
- High speed
- Large area

Page 21 Sequence 1

Networking Subscriber High-speed link connection (e.g. SONET) Residential Internet service Configuration user provider (ISP) Router Internet ATM switch High-speed Firewall link host **ATM** Network Ethernet Router switch

Private

WAN

rayt ZZ

LAN PCs

and workstations

Information

server

Figure 1.7 A Networking Configuration

Page 23 Sequence 1