
Ethernet

Chapter 12 in Stallings 10th Edition

CS420/520 Axel Krings

Page 1

Early on...

Earliest was ALOHA

- Developed for packet radio networks
- Station may transmit a frame at any time
- If frame is determined invalid, it is ignored
- Maximum utilization of channel about 18%

Next came slotted ALOHA

- Organized slots equal to transmission time
- Increased utilization to about 37%

CS420/520 Axel Krings

Page 3

Sequence 12

ALOHA

- Packet Radio
- When station has frame, it sends it!
- Station listens (for max round trip time) plus small increment
- If ACK, fine. If not, retransmit
- If no ACK after repeated transmissions, give up.
- Frame check sequence (as in HDLC)
- If frame OK and address matches receiver, send ACK
- Frame may be damaged by noise or by another station transmitting at the same time (collision)
- Any overlap of frames causes collision
- Max utilization 18%

CS420/520 Axel Krings

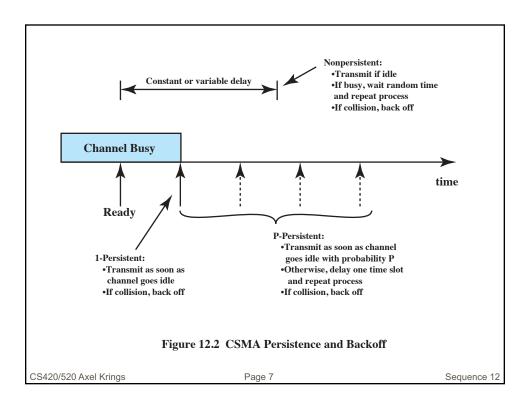
Page 4

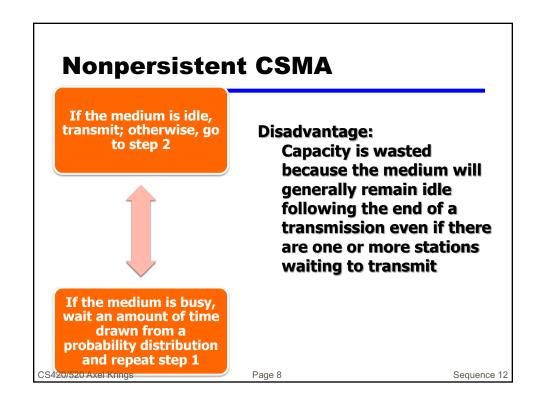
Slotted ALOHA

- Time in uniform slots equal to frame transmission time
- Need central clock (or other sync mechanism)
- Transmission begins at slot boundary
- Frames either miss or overlap totally
- Max utilization 37%

CS420/520 Axel Krings

Page 5


Seguence 12


CSMA/CD Precursors

- Carrier Sense Multiple Access (CSMA)
 - Station listens to determine if there is another transmission in progress
 - -If idle, station transmits
 - —Waits for acknowledgment
 - If no acknowledgment, collision is assumed and station retransmits
 - -Utilization far exceeds ALOHA

CS420/520 Axel Krings

Page 6

1-Persistent CSMA

- Avoids idle channel time
- Rules:
 - 1. If medium is idle, transmit
 - 2. If medium is busy, listen until idle; then transmit immediately
- Stations are selfish
- If two or more stations are waiting, a collision is guaranteed

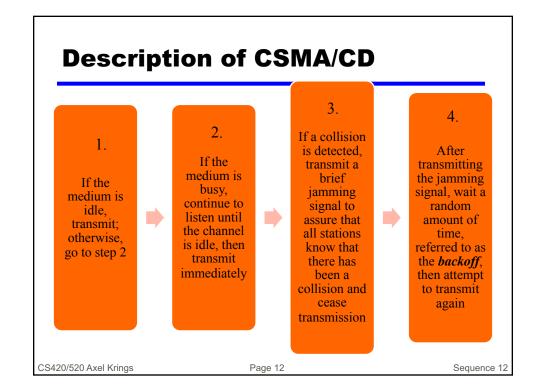
CS420/520 Axel Krings

Page 9

Sequence 12

P-Persistent CSMA

- A compromise to try and reduce collisions and idle time
- P-persistent CSMA rules:
 - 1. If medium is idle, transmit with probability p, and delay one time unit with probability (1-p)
 - 2. If medium is busy, listen until idle and repeat step 1
 - 3. If transmission is delayed one time unit, repeat step 1
- Issue of choosing effective value of p to avoid instability under heavy load


CS420/520 Axel Krings

Page 10

Value of p?

- Have n stations waiting to send
- At end of transmission, expected number of stations is np
 - If *np*>1 on average there will be a collision
- Repeated transmission attempts mean collisions are likely
- Eventually all stations will be trying to send, causing continuous collisions, with throughput dropping to zero
- To avoid catastrophe np<1 for expected peaks of n
 - If heavy load expected, p must be small
 - Smaller p means stations wait longer

CS420/520 Axel Krings Page 11 Sequence 12

CSMA/CD A B C D **Operation** TIME t_0 A's transmission 💆 💆 C's transmission Signal on bus TIME t_1 A's transmission C's transmission Signal on bus C's transmission Signal on bus C's transmission Signal on bus Figure 12.3 CSMA/CD Operation

Page 13

Which Persistence Algorithm?

- IEEE 802.3 uses 1-persistent
- Both nonpersistent and p-persistent have performance problems

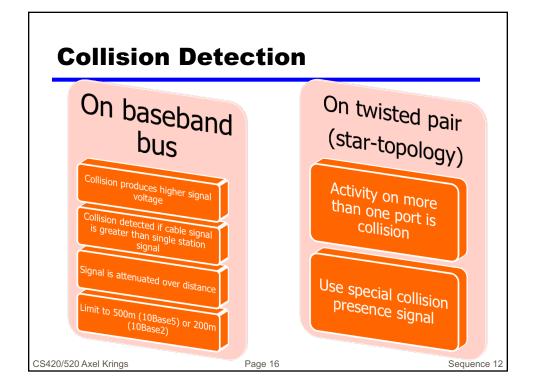
1-persistent seems more unstable than p-persistent

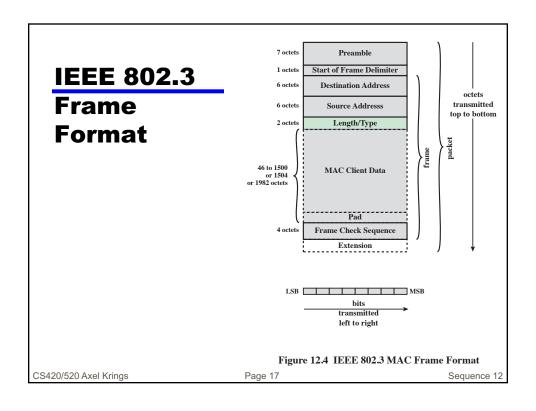
- Because of greed of the stations
- Wasted time due to collisions is short
- With random backoff unlikely to collide on next attempt to send

CS420/520 Axel Krings

CS420/520 Axel Krings

Page 14


Sequence 12


Binary Exponential Backoff

- IEEE 802.3 and Ethernet both use binary exponential backoff
- A station will attempt to transmit repeatedly in the face of repeated collisions
 - —On first 10 attempts, mean random delay doubled
 - —Value then remains the same for 6 further attempts
 - After 16 unsuccessful attempts, station gives up and reports error
- 1-persistent algorithm with binary exponential backoff is efficient over wide range of loads
- Backoff algorithm has last-in, first-out effect

CS420/520 Axel Krings

Page 15

IEEE 802.3 10-Mbps Physical Layer

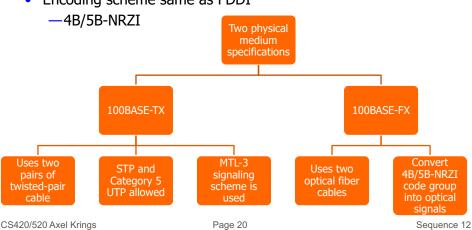
Table 12.1

Medium Alternatives

	10BASE5	10BASE2	10BASE-T	10BASE-FP	
Transmission medium	Coaxial cable (50 ohm)	Coaxial cable (50 ohm)	Unshielded twisted pair	850-nm optical fiber pair	
Signaling technique	Baseband (Manchester)	Baseband (Manchester)	Baseband (Manchester)	Manchester/on- off	
Topology	Bus	Bus	Star	Star	
Maximum segment leng (m)	500	185	100	500	
Nodes per segment	100	30	_	33	
Cable diamet (mm)	ter 10	5	0.4 to 0.6	62.5/125 μm	
CS420/520 Axel Krings Page 18 Sequence 12					

Table 12.2

IEEE 802.3 100BASE-T Physical Layer Medium Alternatives


	100BASE-TX		100BASE-FX	100BASE-T4
Transmission medium	2 pair, STP	2 pair, Category 5 UTP	2 optical fibers	4 pair, Category 3, 4, or 5 UTP
Signaling technique	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Data rate	100 Mbps	100 Mbps	100 Mbps	100 Mbps
Maximum segment length	100 m	100 m	100 m	100 m
Network span	200 m	200 m	400 m	200 m

Sequence 12

CS420/520 Axel Krings Page 19

100BASE-X

- Uses a unidirectional data rate 100 Mbps over single twisted pair or optical fiber link
- Encoding scheme same as FDDI

100BASE-X Data Rate and Encoding

- Unidirectional data rate 100 Mbps over single link
 - —Single twisted pair, single optical fiber
- Encoding scheme same as FDDI
 - -4B/5B-NRZI
 - -Modified for each option

CS420/520 Axel Krings

Page 21

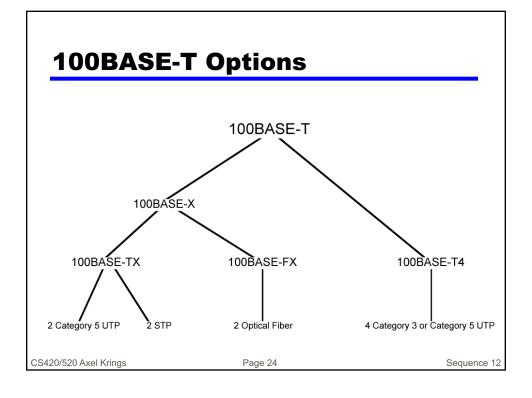
Sequence 12

100BASE-X Media

- Two physical medium specifications
- 100BASE-TX
 - Two pairs of twisted-pair cable
 - One pair for transmission and one for reception
 - STP and Category 5 UTP allowed
 - The MTL-3 signaling scheme is used
- 100BASE-FX
 - Two optical fiber cables
 - One for transmission and one for reception
 - Intensity modulation used to convert 4B/5B-NRZI code group stream into optical signals
 - -1 represented by pulse of light
 - -0 by either absence of pulse or very low intensity pulse

CS420/520 Axel Krings

Page 22


100BASE-T4

- 100-Mbps over lower-quality Cat 3 UTP
 - —Takes advantage of large installed base
 - —Does not transmit continuous signal between packets
 - —Useful in battery-powered applications
- Can not get 100 Mbps on single twisted pair
 - —So data stream split into three separate streams
 - —Four twisted pairs used
 - —Data transmitted and received using three pairs
 - —Two pairs configured for bidirectional transmission

Sequence 12

Use ternary signaling scheme (8B6T)

CS420/520 Axel Krings Page 23

Full Duplex Operation

- Traditional Ethernet half duplex
- Using full-duplex, station can transmit and receive simultaneously
- 100-Mbps Ethernet in full-duplex mode, giving a theoretical transfer rate of 200 Mbps
- Stations must have full-duplex adapter cards
- And must use switching hub
 - Each station constitutes separate collision domain
 - —CSMA/CD algorithm no longer needed
 - -802.3 MAC frame format used

CS420/520 Axel Krings

Page 28

Sequence 12

Mixed Configurations

- Fast Ethernet supports mixture of existing 10-Mbps LANs and newer 100-Mbps LANs
- E.g. 100-Mbps backbone LAN to support 10-Mbps hubs
 - Stations attach to 10-Mbps hubs using 10BASE-T
 - Hubs connected to switching hubs using 100BASE-T
 - Support 10-Mbps and 100-Mbps
 - High-capacity workstations and servers attach directly to 10/100 switches
 - Switches connected to 100-Mbps hubs using 100-Mbps links
 - 100-Mbps hubs provide building backbone
 - Connected to router providing connection to WAN

CS420/520 Axel Krings

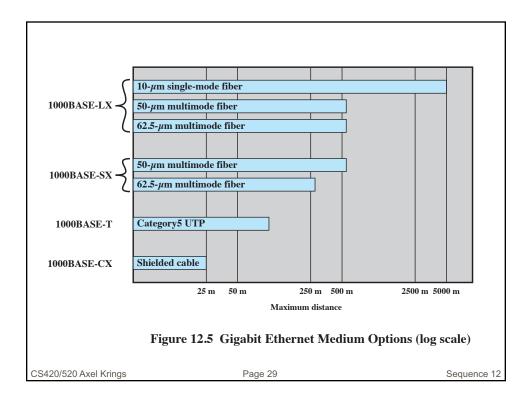
Page 26

Gigabit Ethernet - Differences

- Carrier extension
 - —At least 4096 bit-times long (512 for 10/100)
- Frame bursting
 - —allow multiple frames to be transmitted consecutively, i.e. "together"
- Not needed if using a switched hub to provide dedicated media access

CS420/520 Axel Krings

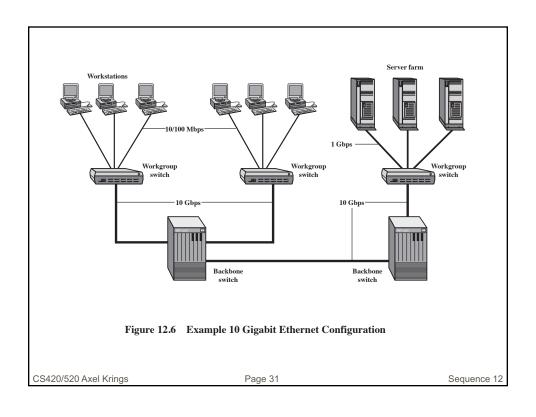
Page 27

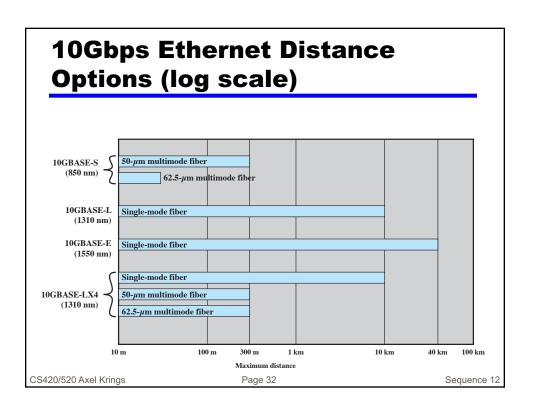

Sequence 12

Gigabit Ethernet - Physical

- 1000Base-SX
 - —Short wavelength, multimode fiber
- 1000Base-LX
 - -Long wavelength, Multi or single mode fiber
- 1000Base-CX
 - —Copper jumpers <25m, shielded twisted pair
- 1000Base-T
 - -4 pairs, cat 5 UTP

CS420/520 Axel Krings

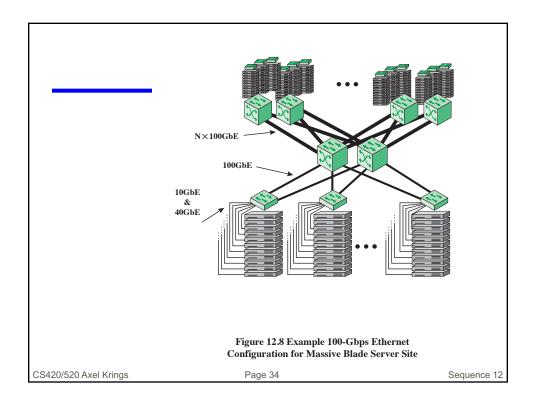

Page 28



10Gbps Ethernet

- Growing interest in 10Gbps Ethernet
 - High-speed backbone use
 - Future wider deployment
- > Alternative to ATM and other WAN technologies
- Uniform technology for LAN, MAN, or WAN
- Advantages of 10Gbps Ethernet
 - No expensive, bandwidth-consuming conversion between Ethernet packets and ATM cells
 - IP and Ethernet together offers QoS and traffic policing approach ATM
 - Have a variety of standard optical interfaces

CS420/520 Axel Krings Page 30 Sequence 12


100-Gbps Ethernet (100GbE)

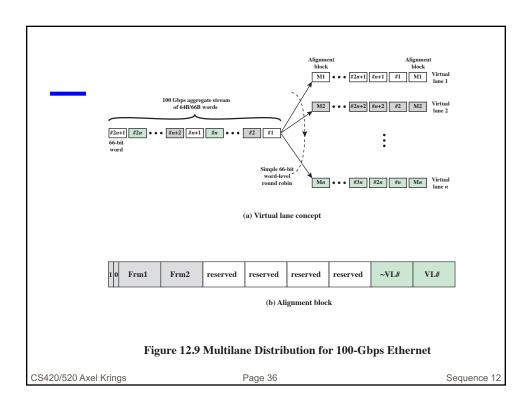
- > Preferred technology for wired LAN
- Preferred carrier for bridging wireless technologies into local Ethernet networks
- > Cost-effective, reliable and interoperable
- Popularity of Ethernet technology:
 - Availability of cost-effective products
 - Reliable and interoperable network products
 - Variety of vendors

CS420/520 Axel Krings

Page 33

Sequence 12

17


Multilane Distribution

used to achieve the required data rates

- > Multilane distribution:
 - Switches implemented as multiple parallel channels
 - Separate physical wires
- Virtual lanes:
 - —If a different number of lanes are actually in use, virtual lanes are distributed into physical lanes in the PMD (physical medium dependent) sublayer
 - Form of inverse multiplexing

CS420/520 Axel Krings

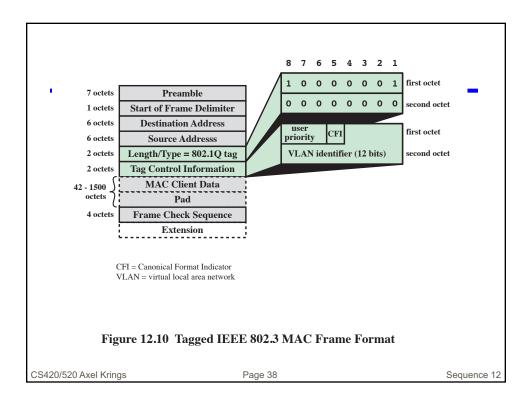
Page 35

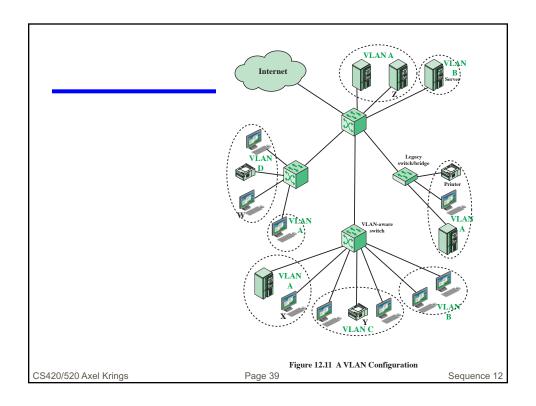
Media Options for 40-Gbps and 100-Gbps Ethernet

Table 12.3

	40 Gbps	100 Gbps
1m backplane	40GBASE-KR4	
10 m copper	40GBASE-CR4	1000GBASE-CR10
100 m multimode fiber	40GBASE-SR4	1000GBASE-SR10
10 km single mode fiber	40GBASE-LR4	1000GBASE-LR4
40 km single mode fiber		1000GBASE-ER4

Naming nomenclature:


Copper: K = backplane; C = cable assembly


Optical: S = short reach (100m); L - long reach (10 km); E = extended long reach (40 km)

Coding scheme: R = 64B/66B block coding

Final number: number of lanes (copper wires or fiber wavelengths)

CS420/520 Axel Krings Page 37 Sequence 12

Summary

- Traditional Ethernet
 - —IEEE 802.3 medium access control
 - —IEEE 802.3 10-Mbps specifications (Ethernet)
- IEEE 802.1Q VLAN standard
- High-speed Ethernet
 - —IEEE 802.3 100-Mbps specifications (Fast Ethernet)
 - —Gigabit Ethernet
 - -10-Gbps Ethernet
 - -100-Gbps Ethernet

CS420/520 Axel Krings

Page 40