Brute Force Strengths and Weaknesses

Strengths

- wide applicability
- simplicity
- yields reasonable algorithms for some important problems
 (e.g., matrix multiplication, sorting, searching, string matching)

Weaknesses

- rarely yields efficient algorithms
- some brute-force algorithms are unacceptably slow
- not as constructive as some other design techniques

Divide-and-Conquer

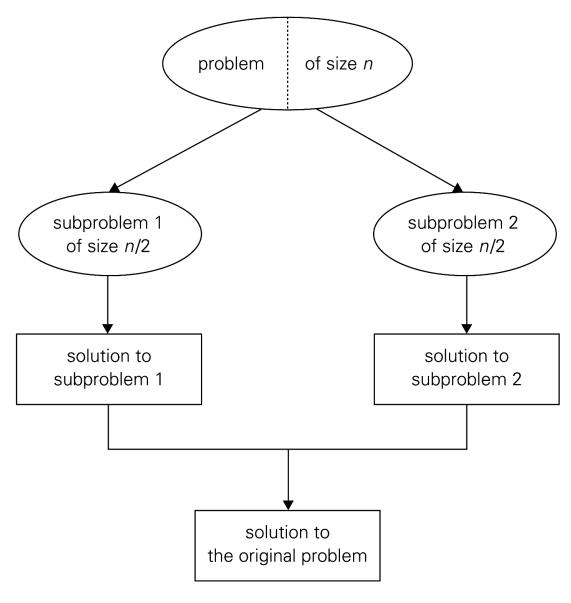


FIGURE 4.1 Divide-and-conquer technique (typical case)

Divide-and-Conquer: a case for the Master Theorem

Theorem (Master Theorem):

Let T(n) be an eventually nondecreasing function that satisfies the recurrence

$$T(n) = aT(n/b) + f(n)$$
 for $n = b^k$, $k = 1, 2, ...$
 $T(1) = c$

where $a \ge 1$, $b \ge 2$, c > 0. If $f(n) \in \Theta(n^d)$ where $d \ge 0$, then

$$T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

Example: summation

Mergesort

- 1) Split array A[0..*n*-1] in two about equal halves and make copies of each half in arrays B and C
- 2) Sort arrays B and C recursively
- 3) Merge sorted arrays B and C into array A
 - a) copy smallest element from B or C to A
 - b) once B or C is processed, copy the remaining unprocessed elements from the other array into A.

ALGORITHM *Mergesort*(A[0..*n*-1])

```
//Sorts array A[0..n-1] by recursive mergesort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

if n > 1

copy A[0..\lfloor n/2 \rfloor-1] to B[0..\lfloor n/2 \rfloor-1]

copy A[\lfloor n/2 \rfloor..n-1] to C[0..\lfloor n/2 \rfloor-1]

Mergesort(B[0..\lfloor n/2 \rfloor-1])

Mergesort(C[0..\lfloor n/2 \rfloor-1])

Merge(B, C, A)
```

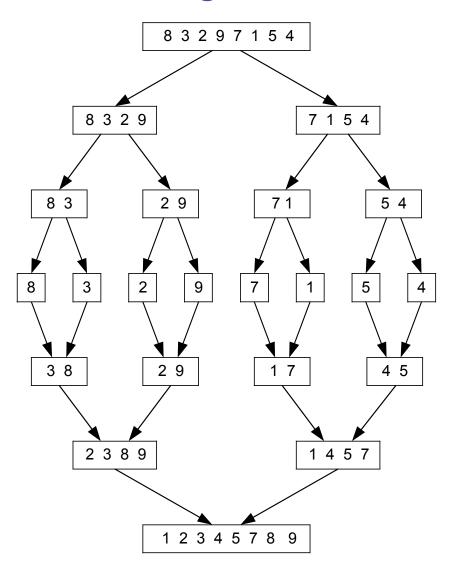
ALGORITHM Merge(B[0..p-1], C[0..q-1], A[0..p+p-1])

```
//Merges two sorted arrays into one sorted array //Input: Arrays B[0..p-1] and C[0..q-1] both sorted //Output: Sorted array A[0..p+q-1] of the elements of B and C
```

```
i \leftarrow 0; j \leftarrow 0; k \leftarrow 0
while i < p and j < q do
    if B[i] \leq C[j]
         A[k] \leftarrow B[i]; i \leftarrow i + 1
    else
         A[k] \leftarrow C[j]; j \leftarrow j + 1
    k \leftarrow k + 1
if i = p
       copy C[i..q-1] to A[k..p+q-1]
else
       copy B[i..p-1] to A[k..p+q-1]
```

CS395: Analysis of Algorithms

Mergesort



Analysis of Mergesort

- All cases have same efficiency: $\Theta(n \log n)$
 - Side Note: Number of comparisons in the worst case is close to theoretical minimum for comparison-based sorting:

$$\lceil \log_2 n! \rceil \approx n \log_2 n - 1.44n$$

- Space requirement: $\Theta(n)$
 - version without this requirements exist, but are more costly
- Can be implemented without recursion (bottom-up)