Brute Force Strengths and Weaknesses

= Strengths
= wide applicability
= simplicity
= yields reasonable algorithms for some important problems
(e.g., matrix multiplication, sorting, searching, string matching)

= Weaknesses
= rarely yields efficient algorithms
= some brute-force algorithms are unacceptably slow
= not as constructive as some other design techniques

Divide-and-Conquer

problem

subproblem 1 subproblem 2
of size n/2 of size n/2

solution to solution to
subproblem 1 subproblem 2

i ofsizen

A 4

solution to
the original problem

FIGURE 4.1 Divide-and-conguer technique (typical case)

2/18/09

Divide-and-Conquer: a case for the Master Theorem

Theorem (Master Theorem):

Let 7(n) be an eventually nondecreasing function that satisfies
the recurrence

T(n)=aT(n/b) + fin) forn=>bk=1,2,...
T(1)=c

wherea>1,b>2, ¢ > 0. If f{n) € O(n?) where d > 0, then
0(n?) if a<b®

T(n)€ O(n’logn) if a=b"
@(nlogb “Y if a> b* 3

Example: summation

2/18/09

Mergesort

1) Split array A[0..n-1] in two about equal halves and make
copies of each half in arrays B and C

2) Sort arrays B and C recursively
3) Merge sorted arrays B and C into array A
a) copy smallest element from B or Cto A

b) once B or C is processed, copy the remaining
unprocessed elements from the other array into A.

ALGORITHM Mergesort(A[0..n-1])

//Sorts array A[0..n-1] by recursive mergesort
/lInput: An array A[0..n-1] of orderable elements
//Output: Array A[0..n-1] sorted in nondecreasing order

ifn>1
copy A[0..|n/2|-1] to B[O..|n/2]-1]
copy A[|n/2]..n-1] to C[O.. [n/2] -1]

Mergesort(B[0.. [n/2] -1])
Mergesort(C[0.. [n/2] -1])
Merge(B, C, A)

2/18/09

ALGORITHM Merge(B[0..p-1], C[0..g-1], A[0..0+p-1])

//Merges two sorted arrays into one sorted array
/lInput: Arrays B[0..p-1] and C[0..g-1] both sorted

/[Output: Sorted array A[0..p+g-1] of the elements of B and C

i < 0;j«<— 0, k<0
while/ <pandj <qgdo
if B[] < CJj]
AlKl < B[i];i <i+1
else
AKl < Cllj <j+1
k —k+1

ifi=p

copy CJj..q-1] to Alk..p+g-1]
else

copy BJi..p-1] to Alk..p+q-1]

CS395: Analysis of Algorithms
Mergesort

‘83‘ \29\ \71\ \54\
n
‘38‘ \29\ \17\ \45\

12345789

2/18/09

Analysis of Mergesort

» All cases have same efficiency: O(n log n)

* Side Note: Number of comparisons in the worst case is
close to theoretical minimum for comparison-based
sorting:

[log, n!] = nlog,n -1.44n

» Space requirement: O(n)
 version without this requirements exist, but are more
costly
» Can be implemented without recursion (bottom-up)

2/18/09

