## Example Fibonacci

Fibonacci numbers:

$$
0,1,1,3,5,8,13,21,34,55, \ldots
$$

Recurrence:

$$
F(n)=F(n-1)+F(n-2) \text { for } n>1
$$

Initial conditions:

$$
F(0)=0, \quad F(1)=1
$$

Shall we use backward substitution?

## Example Fibonacci

## Recurrence:

$$
F(n)=F(n-1)+F(n-2) \text { for } n>1 \text { with } F(0)=0, \quad F(1)=1
$$

is a $2^{\text {nd }}$ order linear homogeneous recurrence with constant coefficients:

$$
a X(n)+b X(n-1)+c X(n-2)=0
$$

Solving $\quad a X(n)+b X(n-1)+c X(n-2)=0$

1) Set up the characteristic equation (quadratic)

$$
a r^{2}+b r+c=0
$$

2) Solve to obtain roots $r_{1}$ and $r_{2}$
3) General solution to the recurrence
if $r_{1}$ and $r_{2}$ are two distinct real roots: $\mathrm{X}(n)=\alpha r_{1}{ }^{n}+\beta r_{2}{ }^{n}$
if $r_{1}=r_{2}=r$ are two equal real roots: $\quad \mathrm{X}(n)=\alpha r^{n}+\beta n r^{n}$
4) Particular solution can be found by using initial conditions

## Linear Recurrence Relations

