
Sockets
Based on

Section 17.3 of Computer Networking with Internet
Protocols and Technology, by William Stallings, Prentice
Hall.

book chapter 12.6.2

1

Sockets
The concept of sockets and sockets programming was
developed in the 1980s in the UNIX environment as the
Berkeley Sockets Interface.

a socket enables communication between a client and server
process and may be connection-oriented or connectionless.

The Berkeley Sockets Interface is the de facto standard
application programming interface (API) for developing
networking applications

Windows Sockets (WinSock) is based on the Berkeley
specification.

The sockets API provides generic access to interprocess
communications services.

2

Sockets

3

Sockets
TCP and UDP header includes source port and
destination port fields, IP header includes IP address

TCP/UDP: The port values identify the respective users
(applications) of the two TCP entities.

IP (IPv4 and IPv6): header includes source address and
destination address fields

these IP addresses identify the respective host systems.

Definition of a Socket

The concatenation of a port value and an IP address forms a
socket, which is unique throughout the Internet.

4

Sockets
The socket is used to define an API, which is a generic
communication interface for writing programs that use
TCP or UDP.

In practice, when used as an API, a socket is identified by
the triple (protocol, local address, local process).

The local address is an IP address and the local process is
a port number. Because port numbers are unique within a
system, the port number implies the protocol (TCP or
UDP).

5

Sockets
The Sockets API recognizes two types of sockets:

Stream sockets (SOCK_STREAM)

make use of TCP, which provides a connection-oriented
reliable data transfer.

with stream sockets, all blocks of data sent between a
pair of sockets are guaranteed for delivery and arrive in
the order that they were sent.

6

Sockets
The Sockets API recognizes two types of sockets:

Datagram sockets, (SOCK_DGRAM)

make use of UDP, which does not provide the connection-
oriented features of TCP.

with datagram sockets, delivery is not guaranteed, nor is order
necessarily preserved.

There is a third type of socket provided by the Sockets
API: raw sockets, (SOCK_RAW)

Raw sockets

allow direct access to lower layer protocols, such as IP.
7

Sockets
Socket Interface Calls

To use sockets, it is a three-step process:

1. Socket Setup

2. Socket Connection

3. Socket Communication

Any program that uses sockets must include

/usr/include/sys/types.h

/usr/include/sys/socket.h

8

Sockets
The typical TCP client’s communication involves four
basic steps:

1. Create a TCP socket using socket().

2. Establish a connection to the server using connect().

3. Communicate using send() and recv().

4. Close the connection with close().

9

Sockets
Socket Setup

The first step in using Sockets is to create a new socket using
the socket() command. There are three parameters:

1. the protocol family is always PF INET for the TCP/IP protocol
suite.

2. the type specifies whether this is a stream or datagram socket

3. the protocol specifies either TCP or UDP.

The reason that both type and protocol need to be specified
is to allow additional transport-level protocols to be
included in a future implementation.

10

Sockets
After socket is created, it must have an address to listen
to.

The bind() function binds a socket to a socket address. The
address has the structure:

11

After a socket is created, it must have an address to listen to. The bind()
function binds a socket to a socket address. The address has the structure:

struct sockaddr_in {
short int sin_family; // Address family (TCP/IP)
unsigned short int sin_port; // Port number
struct in_addr sin_addr; // Internet address
unsigned char sin_zero[8]; // Same size as struct sockaddr

};

8

Sockets
Socket Connection

Stream socket

once the socket is created, a connection must be set up to a
remote socket.

one side functions as a client, and requests a connection to the
other side, which acts as a server.

12

Sockets
The server side of a connection setup requires two steps:

1. a server application issues a listen(),

indicates that socket is ready to accept incoming connections.

parameter backlog is the number of connections allowed on
the incoming queue.

Each incoming connections is placed in this queue until a
matching accept() is issued by the server side.

13

Sockets
The server side of a connection setup requires two steps:

2. the accept() call is used to remove one request from
the queue.

If the queue is empty, the accept() blocks the process until a
connection request arrives.

If there is a waiting call, then accept() returns a new file
descriptor for the connection.

This creates a new socket, which has the IP address and port
number of the remote party, the IP address of this system, and
a new port number.

14

Sockets
A client application issues a connect()

that specifies both a local socket and the address of a remote
socket.

If the connection attempt is unsuccessful connect() returns
the value 1.

If the attempt is successful, connect() returns a 0 and fills in
the file descriptor parameter to include the IP address and
port number of the local and foreign sockets.

Recall that the remote port number may differ from that
specified in the foreignAddress parameter because the port
number is changed on the remote host.

15

Sockets
Socket Communication

For stream communication, the functions send() and recv()
are used to send or receive data over the connection
identified by the sockfd parameter.

In the send() call, the *msg parameter points to the block of
data to be sent and the len parameter specifies the number of
bytes to be sent.

The flags parameter contains control flags, typically set to 0.

The send() call returns the number of bytes sent, which may
be less than the number specified in the len parameter.

16

Sockets
Socket Communication cont.

In the recv() call, the *buf parameter points to the buffer for
storing incoming data, with an upper limit on the number of
bytes set by the len parameter.

At any time, either side can close the connection with the
close() call, which prevents further sends and receives. The
shutdown() call allows the caller to terminate sending or
receiving or both.

17

18

Socket System Calls

12

Sockets
Datagram Communication

For datagram communication, the functions sendto() and
recvfrom() are used.

The sendto() call includes all the parameters of the send() call
plus a specification of the destination address (IP address and
port).

Similarly, the recvfrom() call includes an address parameter,
which is filled in when data are received.

19

Sockets
Example from socket tutorial at

http://www.linuxhowtos.org/C_C++/socket.htm

the server and client code for this site are shown below

20

21

/* A simple server in the internet domain using TCP
 The port number is passed as an argument */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

void error(char *msg)
{
 perror(msg);
 exit(1);
}

server code

22

int main(int argc, char *argv[])
{
 int sockfd, newsockfd, portno, clilen;
 char buffer[256];
 struct sockaddr_in serv_addr, cli_addr;
 int n;
 if (argc < 2) {
 fprintf(stderr,"ERROR, no port provided\n");
 exit(1);
 }
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 bzero((char *) &serv_addr, sizeof(serv_addr));
 portno = atoi(argv[1]);
 serv_addr.sin_family = AF_INET;
 serv_addr.sin_addr.s_addr = INADDR_ANY;
 serv_addr.sin_port = htons(portno);
 if (bind(sockfd, (struct sockaddr *) &serv_addr,
 sizeof(serv_addr)) < 0)
 error("ERROR on binding");
 listen(sockfd,5);
 clilen = sizeof(cli_addr);
 newsockfd = accept(sockfd,
 (struct sockaddr *) &cli_addr,
 &clilen);
 if (newsockfd < 0)
 error("ERROR on accept");
 bzero(buffer,256);
 n = read(newsockfd,buffer,255);
 if (n < 0) error("ERROR reading from socket");
 printf("Here is the message: %s\n",buffer);
 n = write(newsockfd,"I got your message",18);
 if (n < 0) error("ERROR writing to socket");
 return 0;
}

23

client code

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

void error(char *msg)
{
 perror(msg);
 exit(0);
}

24

int main(int argc, char *argv[])
{
 int sockfd, portno, n;
 struct sockaddr_in serv_addr;
 struct hostent *server;

 char buffer[256];
 if (argc < 3) {
 fprintf(stderr,"usage %s hostname port\n", argv[0]);
 exit(0);
 }
 portno = atoi(argv[2]);
 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 if (sockfd < 0)
 error("ERROR opening socket");
 server = gethostbyname(argv[1]);
 if (server == NULL) {
 fprintf(stderr,"ERROR, no such host\n");
 exit(0);
 }

25

 bzero((char *) &serv_addr, sizeof(serv_addr));
 serv_addr.sin_family = AF_INET;
 bcopy((char *)server->h_addr,
 (char *)&serv_addr.sin_addr.s_addr,
 server->h_length);
 serv_addr.sin_port = htons(portno);
 if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)
 error("ERROR connecting");
 printf("Please enter the message: ");
 bzero(buffer,256);
 fgets(buffer,255,stdin);
 n = write(sockfd,buffer,strlen(buffer));
 if (n < 0)
 error("ERROR writing to socket");
 bzero(buffer,256);
 n = read(sockfd,buffer,255);
 if (n < 0)
 error("ERROR reading from socket");
 printf("%s\n",buffer);
 return 0;
}

Sockets
Another example

26

27

Sample Application

/* TCPEchoClient4.c

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include "Practical.h"

int main(int argc, char *argv[])

{

if (argc < 3 || argc > 4) // Test for correct number of arguments

DieWithUserMessage("Parameter(s)",

"<Server Address> <Echo Word> [<Server Port>]");

char *servIP = argv[1]; // First arg: server IP address (dotted quad)

char *echoString = argv[2]; // Second arg: string to echo

// Third arg (optional): server port (numeric). 7 is well-known echo port

in_port_t servPort = (argc == 4) ? atoi(argv[3]) : 7;

// Create a reliable, stream socket using TCP

int sock = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if (sock < 0)

DieWithSystemMessage("socket() failed");

14

28

// Construct the server address structure
struct sockaddr_in servAddr; // Server address
memset(&servAddr, 0, sizeof(servAddr)); // Zero out structure
servAddr.sin_family = AF_INET; // IPv4 address family
// Convert address
int rtnVal = inet_pton(AF_INET, servIP, &servAddr.sin_addr.s_addr);
if (rtnVal == 0)

DieWithUserMessage("inet_pton() failed", "invalid address string");
else if (rtnVal < 0)

DieWithSystemMessage("inet_pton() failed");
servAddr.sin_port = htons(servPort); // Server port

// Establish the connection to the echo server
if (connect(sock, (struct sockaddr *) &servAddr, sizeof(servAddr)) < 0)
DieWithSystemMessage("connect() failed");

size_t echoStringLen = strlen(echoString); // Determine input length

// Send the string to the server
ssize_t numBytes = send(sock, echoString, echoStringLen, 0);
if (numBytes < 0)

DieWithSystemMessage("send() failed");
else if (numBytes != echoStringLen)

DieWithUserMessage("send()", "sent unexpected number of bytes");

15

29

// Receive the same string back from the server

unsigned int totalBytesRcvd = 0; // Count of total bytes received

fputs("Received: ", stdout); // Setup to print the echoed string

while (totalBytesRcvd < echoStringLen)

{

char buffer[BUFSIZE]; // I/O buffer

/* Receive up to the buffer size (minus 1 to leave space for

a null terminator) bytes from the sender */

numBytes = recv(sock, buffer, BUFSIZE - 1, 0);

if (numBytes < 0)

DieWithSystemMessage("recv() failed");

else if (numBytes == 0)

DieWithUserMessage("recv()", "connection closed prematurely");

totalBytesRcvd += numBytes; // Keep tally of total bytes

buffer[numBytes] = ’\0’; // Terminate the string!

fputs(buffer, stdout); // Print the echo buffer

}

fputc(’\n’, stdout); // Print a final linefeed

close(sock);

exit(0);

}

16

