
Environment
When a program is executed...

process that does exec can pass command-line arguments to
the new program

this is part of the UNIX system shells

1

1 Environment

1.1 Quick Review—Argument List

When a program is executed, the process that does the exec can pass command-
line arguments to the new program. This is part of the normal operation of
the UNIX system shells.

int main(int argc, char *argv[])
{

int i;

/* echo all command-line args */
for (i = 0 ; i < argc ; i++)

printf("argv[%d]: %s\n", i, argv[i]);
}

1

Environment
Environment List

each program also passed an environment list

this list is an array of char pointers, with each pointer
containing the address of a null-terminated C string

the address of the array of pointers is contained in the global
variable environ:

extern char **environ;

2

Environment
Example of environment with five strings

the null bytes a tthe end of each string are explicitly shown

3

3

Environment
Terms

environ is called the environment pointer

the array of pointers is called the environment list

the strings they point to are called environment strings

4

Environment
Historically, most UNIX systems have provided a third
argument to the main function that is the address to the
environment list

int main(int argc, char *argv[], char *envp[]);

Because ISO C specifies that the main function be written
with two arguments, and because this third argument provides
no benefit over the global variable environ, POSIX.1 specifies
that environ should be used instead of the (possible) third
argument. Access to specific environment variables is
normally through the getenv and putenv functions instead of
through the environ variable. But to go through the entire
environment, the environ pointer must be used.

5

Environment
Show the environment

6

/* environ.c

Show enviroment settings.
*/

#include <stdio.h>

int main(int argc, char *argv[], char *envp[])
{

int i;
/* echo all environment args */

for (i = 0 ; envp[i] ; i++)
printf("envp[%d]: %s\n", i, envp[i]);

}

5

Environment
Environment Variables

environment strings are usually of the form name=value

the Unix kernel never looks at these strings

their interpretation is up the the various applications

the shell uses numerous environment variables

some are automatically set at login, e.g., HOME, USER

others are for us to set, e.g., If we set the environment variable
MAILPATH, for example, it tells the Bourne shell, GNU
Bourne-again shell, and Korn shell where to look for mail.

7

Environment
Support for various environment list functions

8

Support for various environment list functions

9

Environment

9

ISO C defines a function that we can use to fetch values from the en-

vironment, but this standard says that the contents of the environment are

implementation defined.

#include <stdlib.h>

char *getenv(const char *name);

Returns: pointer to value associated with name, NULL if not found

Note that this function returns a pointer to the value of a name=value
string. We should always use getenv to fetch a specific value from the envi-

ronment, instead of accessing environ directly.

10

Environment
 Manipulating environment variables

10

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

Environment
 Manipulating environment variables

11

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

Environment
 Manipulating environment variables

12

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

Environment
 Manipulating environment variables

13

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

In addition to fetching the value of an environment variable, sometimes

we may want to set an environment variable. We may want to change the

value of an existing variable or add a new variable to the environment.

#include <stdlib.h>

int putenv(char *str);
int setenv(const char *name, const char *value, int rewrite);
int unsetenv(const char *name);

All return: 0 if OK, nonzero on error

The operation of these three functions is as follows.

• The putenv function takes a string of the form name=value and places

it in the environment list. If name already exists, its old definition is

first removed.

• The setenv function sets name to value. If name already exists in the

environment, then (a) if rewrite is nonzero, the existing definition for

name is first removed; (b) if rewrite is 0, an existing definition for name
is not removed, name is not set to the new value, and no error occurs.

• The unsetenv function removes any definition of name. It is not an

error if such a definition does not exist.

Note the difference between putenv and setenv. Whereas setenv must

allocate memory to create the name=value string from its arguments,

putenv is free to place the string passed to it directly into the envi-

ronment. On Linux and Solaris, the putenv implementation places the

address of the string we pass to it directly into the environment list. In

this case, it would be an error to pass it a string allocated on the stack,

since the memory would be reused after we return from the current

function.

11

