
Perl
If

just as you may have guessed :)

just like in C we could used !=, <, or >

$i = 0;
if ($i == 0) {
 print "it's true\n";
} else {
 print "it's false\n";
}

1

Perl
While Loops

execute statements if condition is true

while ($i == 0) {
 print "it's true\n";
 ...
 <do some things that may modify the value of $i>
 ...
}

2

Perl
For Loops

just like in C

(from, to, increment)

for ($i = 0 ; $i < 10 ; $i++) {
 print $i, " ";
}
print "\n";

counts from 0 to 9 and prints the value (without a newline
until the end) and generates:
0 1 2 3 4 5 6 7 8 9

3

Perl
Foreach Loops

just like in C shell

A foreach loop looks like this:

foreach $n (1..15) {
 print $n, " ";
}
print "\n";

and generates about what you would expect:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

Perl
File I/O

unlike shell scripts no we can input and output from/to files,
rather than only stdin stdout.

You still can access standard input and output:

while (@line=<stdin>) {
 foreach $i (@line) {
 print "->", $i; # also reads in EOL
 }
}

This script will read each line from the standard input and
print it.

5

Perl
File I/O

Assume you have a specific data file you wish to read
from:

$FILE="info.dat";
open (FILE); # name of var, not eval
@array = <FILE>;
close (FILE);
foreach $line (@array) {
 print "$line";
}

This Perl script opens "info.dat" and reads all its lines into the
array called "array". It then prints out each line.

6

Perl
Functions

Perl functions are simple to use, although the syntax
can get complicated.

sub pounds2dollars {
 $EXCHANGE_RATE = 1.54; # modify when necessary
 $pounds = $_[0];
 return ($EXCHANGE_RATE * $pounds);
}

This function changes a value specified in pounds
sterling into US dollars (exchange rate of $1.54 to the
pound, which can be modified as necessary). The
special variable $_[0] references the first argument to
the function.

7

Perl
Functions

sub pounds2dollars {
 $EXCHANGE_RATE = 1.54; # modify when necessary
 $pounds = $_[0];
 return ($EXCHANGE_RATE * $pounds);
}

To call the function, our Perl script would look like this:

$book = 3.0; # price in British pounds
$value = pounds2dollars($book);
print "Value in dollars = $value\n";

When we run this script (which includes the Perl function at
the end), we get:

Value in dollars = 4.62
8

Perl
Library Functions

Perl has ability of Linux system calls via Perl library
functions

we have already used open() cose(), and print()

exit(1); # exit a Perl program and pass the
 # specified return code to the shell.

Perl also provides a special exit function to print a
message to stdout and exit with the current error code:

open(FILE) or die("Cannot open file.");

if call to open() fails the die() function is executed

9

Perl
Library Functions

Some string functions to assist in manipulating string
values are length(), index(), and split():

$len = length($fullname);

sets the $len variable to the length of the text stored in the
string variable $fullname.

10

Perl
Library Functions

To locate one string inside another:

$i = index($fullname, "Smith");

The value of $i will be zero if the string begins with the text
you specify as the search string (the second argument).

11

Perl
Library Functions

To divide up a line of text based on a delimiting
character (for example, if you want to separate the
tokens from the Linux password file into its various
parts):

($username, $password, $uid, $gid, $name, $home, $shell)
 = split(/:/, $line)

In this case, the split() function returns an array of values
found in the string specified by $line and separated by a
colon.

12

Perl
Library Functions

Another common function provides your Perl program
with the time and date:

($s, $m, $h, $dy, $mo, $yr, $wd, $yd, $dst) = gmtime();
$mo++; # month begins counting at zero
$yr+=1900; # Perl returns years since 1900
print "The date is $mo/$dy/$yr.\n";
print "The time is $h:$m:$s.\n";

The code above produces the following result:
The date is 10/07/2010.
The time is 18:40:27.

Note that gmtime() returns 9 values. The Perl syntax is to specify these
values in parentheses (as you would if you were assigning multiple values
to an array).

13

Perl
Command-Line Arguments

we can pass command-line arguments to a Perl script

$n = $#ARGV+1; # number of arguments (beginning at zero)
print $n, " args: \n";
for ($i = 0 ; $i < $n ; $i++) {
 print " @ARGV[$i]\n";
}

This Perl script prints the number of arguments that were
supplied on the perl command (after the name of the Perl
script itself) and then prints out each argument on a
separate line.

14

Perl
Command-Line Arguments

modified British pound conversion

if ($#ARGV < 0) { # if no argument given
 print "Specify value in to convert to dollars\n";
 exit
}
$poundvalue = @ARGV[0]; # get value from command line

$dollarvalue = pounds2dollars($poundvalue);

print "Value in dollars = $dollarvalue\n";

sub pounds2dollars {
 $EXCHANGE_RATE = 1.54; # modify when necessary

 $pounds = $_[0];
 return ($EXCHANGE_RATE * $pounds);
}

15

