
Perl
Practical Extraction and Reporting Language

general-purpose, high level, general-purpose, interpreted,
dynamic programming language

invented by Larry Wall 1987 (a linguist working at NASA)

different versions of Perl, upcoming: Perl 6

links:

www.perl.org/ general site

http://perldoc.perl.org/index-tutorials.html tutorials

1

Running Perl
perl [-c] fileName

-c argument only checks for syntax but does not execute the
script

perl -v
-bash-3.2$ perl -v
This is perl, v5.8.8 built for x86_64-linux-thread-multi
Copyright 1987-2006, Larry Wall

Perl may be copied only under the terms of either the Artistic License or the
GNU General Public License, which may be found in the Perl 5 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using "man perl" or "perldoc perl". If you have access to the
Internet, point your browser at http://www.perl.org/, the Perl Home Page.

2

Perl
Running a Perl script

-bash-3.2$ perl file.pl

or use #! in first line of script

#!/usr/bin/perl

perl version of “hello world”

print “hello world. \n”; each line must end with “;”

3

Perl
Simple Variables

variables always use $ sign, e.g.,

$i =3;

4

Perl
Variables, Strings and Integers

strings specified by text in quotation marks

strings can be concatenated by operator “.”

integers support a range operator, e.g., 3..15

print 1, 2, 3..15, "\n"; # range operator
print "A", "B", "C", "\n"; # strings
$i = "A" . "B" ; # concatenation operator
print "$i", "\n" ;

output

123456789101112131415
ABC
AB

5

Perl
Arrays

dynamic allocation (don’t need to worry about allocation, it is
done for you)

arrays use @ symbol, e.g., @arr

@arr = (1,2,3,4,5);

This line defines the array "arr" and puts 5 values in it. Same as

@arr = (1..5);

print @arr[0],"\n"; prints out first element of arr

6

Perl
Arrays

array elements start with 0

use array index to access specific element

if only array name is printed, the entire array is printed

using an array in a scalar operation will be interpreted as the
number of elements in the array

7

Perl
Arrays

@a1 = (1); # array of 1 element
@a2 = (1,2,3,4,5); # array of 5 elements
@a3 = (1..10); # array of 10 elements

print @a1, " ", @a2, " ", @a3, "\n";

print @a1[0], " ", @a2[1], " ", @a3[2], "\n";

using as scalar will yield number of items
print @a2 + @a3, "\n";

will result in the following output:

1 12345 12345678910
1 2 3
15

8

Perl
Associated arrays

rather than using index with value 0 to maximum size of
array the array value can be used to access elements

@month{'January'} = 1;
@month{'February'} = 2; ...

and so on. Then you can read in the month name and access its
numeric value this way:

$monthnum = $month{$monthname};

9

Perl
alternative way to set up array

%month = ("January", 1, "February", 2, "March", 3,
 "April", 4, "May", 5, "June", 6,
 "July", 7, "August", 8, "September", 9,
 "October", 10, "November", 11, "December", 12);

The set of values that can be used in an associative array, or the
keys to the array, are returned as a regular array by a call to the
Perl function keys():

@monthnames = keys(%month);

10

Perl
Mathematical and Logical Operators

similar to other languages

+, -, *, /

integer increments before or after value is used

11

Perl
examples

$n = 2;
print ("\$n=", $n, "\n");

$n = 2 ; print ("increment after \$n=", $n++, "\n");
$n = 2 ; print ("increment before \$n=", ++$n, "\n");
$n = 2 ; print ("decrement after \$n=", $n--, "\n");
$n = 2 ; print ("decrement before \$n=", --$n, "\n");

This script generates the following output:

$n=2
increment after $n=2
increment before $n=3
decrement after $n=2
decrement before $n=1

12

Perl
examples

$n = 2;
print ("\$n+2=", $n + 2, "\n");
print ("\$n-2=", $n - 2, "\n");
print ("\$n*2=", $n * 2, "\n");
print ("\$n/2=", $n / 2, "\n");

This script generates the following output:

$n+2=4
$n-2=0
$n*2=4
$n/2=1

13

Perl
examples

$r = 3.14; # real number
print ("\$r=", $r, "\n");

print ("\$r*2=", $r * 2, "\n"); # double
print ("\$r/2=", $r / 2, "\n"); # cut in half

print ("1 && 1 -> ", 1 && 1, "\n");
print ("1 && 0 -> ", 1 && 0, "\n");
print ("1 || 1 -> ", 1 || 1, "\n");
print ("1 || 0 -> ", 1 || 0, "\n");

This script generates the following output:

$r=3.14
$r*2=6.28
$r/2=1.57
1 && 1 -> 1
1 && 0 -> 0
1 || 1 -> 1
1 || 0 -> 1

14

Perl
String Operators

only simple operation is concatination

$firstname = "Bob";
$lastname = "Smith";
$fullname = $firstname . " " . $lastname;
print "$fullname\n";

results in the output:

Bob Smith

15

Perl
String Operators

several simple matching operations are available

if ($value =~ /abc/) { print "contains 'abc'\n"};
$value =~ s/abc/def/; # change 'abc' to 'def'
$value =~ tr/a-z/A-Z/; # translate to upper case

16

Perl
Comparison Operators

17

