
Bash (Bourne Again Shell)
The standard shell of Linux

major shell commands include:

alias, bg, builtin, case..in..esac, cd, declare, dirs, env, export,
fg, for..do..done, function, history, if..then..elif..then..else..fi,
jobs, kill, local, popd, pushd, read, readonly, return,
select..do..done, set, source, trap, unalias, unset,
until..do..done, while..do..done

bash is installed at /bin/bash, /bin/sh is link to /bin/bash

1

Bash (Bourne Again Shell)
Features of Bash new or different from the previous
discussion

variable manipulation

command-line processing, aliases, and history

arithmetic, conditional expressions, control structures

directory stack

job control

shell functions

2

Bash Startup
Bash starts just like any program

as login shell

executes commands in .bash_profile

as normal invocation

executes commands in file .bashrc

may want to call .bashrc from within .bash_profile

3

Variables
creation and use of shell variables are for:

Value assignment and access

Defining and using lists of values

Testing a value or for existence of a variable

Reading or writing a variable's value

4

Variables
Simple variable -- creation/assignment

{value = name}

e.g. gameswon=12

built-in command set displays all variables set in shell

5

Accessing simple variables
$name Replaced by the value of name.

${name} Replaced by the value of name. This form is
useful if the expression is immediately followed by an
alphanumeric that would otherwise be interpreted as part
of the variable name.

$ verb=sing ...assign a variable.
$ echo I like $verbing ...there's no variable "verbing".
I like
$ echo I like ${verb}ing ...now it works.
I like singing
$ _

6

${name-word} Replaced by the value of name if set, and
word otherwise.

-bash-3.2$ ddd=${ddd- `date`}

-bash-3.2$ echo $ddd

Mon Sep 27 09:31:03 PDT 2010

-bash-3.2$

-bash-3.2$ echo ${asdfasdf-test} (there is no asdfasdf)

test

7

${name+word} Replaced by word if name is set, and
nothing otherwise.

-bash-3.2$ flag=1

-bash-3.2$ echo ${flag+'flag is set'}

flag is set

-bash-3.2$ echo ${flag2+ 'flag2 is set'}

_

-bash-3.2$

8

${name=word} Assigns word to the variable name if
name is not already set. Then it is replaced by the value
of name.

-bash-3.2$ echo x = ${x=10}
x = 10
-bash-3.2$ echo $x
10

9

${name?word} Replaced by name if name is set. If
name is not set, word is displayed to the standard error
channel and the shell is exited. If word is omitted, then a
standard error message is displayed instead.

-bash-3.2$ total=10
-bash-3.2$ value=${total?'total not set'}
-bash-3.2$ echo $value
10
-bash-3.2$ value=${grandTotal?'grand total not set'}
-bash: grandTotal: grand total not set
-bash-3.2$

10

Another example for ${name?word}

$ cat script.sh ...look at the script.
value=${grandTotal?'grand total is not set'}
echo done # this line is never executed.
$ script.sh ...run the script.
script.sh: grandTotal: grand total is not set
$ _

11

${#name} Replaced by the length of the value of name.

${#name[*] } Replaced by the number of elements in
the array name.

${name:+word } Work like their counterparts that do not
contain a :, except that name must be set and non-null
instead of just set.

${name:=word }

${name:?word }

${name:+word }

12

${name#pattern} Removes a leading pattern from name.
The expression is replaced by the value of name if name
doesn't begin with pattern, and with the remaining suffix if it
does. This form removes the smallest matching pattern.

${name##pattern} This form removes the largest matching
pattern

-bash-3.2$ echo $PWD
/home/krings/CS270
-bash-3.2$ echo $HOME
/home/krings
-bash-3.2$ echo ${PWD#$HOME/}
CS270
-bash-3.2$ echo ${PWD#$HOME}
/CS270

13

${name%pattern} Removes a trailing pattern from name.
The expression is replaced by the value of name if name
doesn't end with pattern, and with the remaining prefix if it
does. This form removes the smallest matching pattern.

${name%%pattern} This form removes the largest
matching pattern.

-bash-3.2$ testfile=menu.sh
-bash-3.2$ echo ${testfile%.sh}.bak
menu.bak
-bash-3.2$

14

List Variables
List variables (arrays) are created with declare. Simply
using the variable in an array format will also work.

Shell command: declare [-ax] [listname]

If the named variable does not already exist, it is created.

If an array name is not specified when -a is used, declare will
display all currently defined arrays and their values.

If the -x option is used, the variable is exported to subshells.
declare writes its output in a format that can be used again as
input commands. This is useful when you want to create a
script that sets variables as they are set in your current
environment.

15

List Variables
example for declare

$ declare -a teamnames
$ teamnames[0]="Dallas Cowboys"
$ teamnames[1]="Washington Redskins"
$ teamnames[2]="New York Giants"

if you omit the declare command, the other lines will still
work as expected.

16

Accessing List Variables
When accessing array values, you can always put braces
around the variable name to explicitly distinguish it from
other text that might be around it.

$ echo "There are ${#teamnames[*]} teams in the NFL"
There are 32 teams in the NFL
$ echo "They are: ${teamnames[*]}"
...

17

Building Lists
You can build an array in one of two ways.

If you know how many elements you will need, you can use
the declare built-in command to define the space and assign
the values into specific locations in the list.

If you don't know, or don't care, how many elements will be
in the list, you can simply list them and they will be added in
the order you specify.

18

Building Lists: example
$ declare -a teamnames
$ teamnames[0]="Dallas Cowboys"
$ teamnames[1]="Washington Redskins"
$ teamnames[2]="New York Giants"
 ...
$ teamnames[31]="Houston Texans"

This can also be done in a single (long) command:
$ declare -a teamnames
$ teamnames=([0]="Dallas Cowboys" \
 [1]="Washington Redskins" \
 ...
 [31]="Houston Texans")

or simply type
$ teamnames = ("Dallas Cowboys" "Washington Redskins" \
 "New York Giants" "New York Jets" \
 ...
 "Houston Texans")

19

Building Lists: example
How many elements are counted in the array?

As many as are assigned

? mylist[0]=27
? mylist[5]=30
? echo ${#mylist[*]} ...number of elements in mylist[]
2
? declare -a ...display defined element values
declare -a mylist='([0]="27" [5]="30")'
? _

it shows 2 and not 6 elements

20

Destroying Lists
List variables are deallocated by using built-in command
unset

Shell command: unset name

 unset name[index]

deallocates specific variable or element in list variable

 ? unset teamnames[17]

21

Reading a Variable from stdin
Shell Command: read { variable }+

read one line from standard input and then assigns successive
words from the line to the specified variables.

Any words that are left over are assigned to the last-named
variable.

$ cat script.sh ...list the script.
echo "Please enter your name: \c"
read name # read just one variable.
echo your name is $name # display the variable.
$ bash script.sh ...run the script.
Please enter your name: Joe Blow
your name is Joe Blow ...whole line was read.
$ _

22

Reading a Variable from stdin
Reading multiple variables

-bash-3.2$ cat script.sh
echo "Enter your name: "
read firstname lastname
echo your first name is $firstname
echo your last name is $lastname

-bash-3.2$./script.sh
Enter your name:
Joe Blow
your first name is Joe
your last name is Blow
-bash-3.2$

-bash-3.2$./script.sh
Enter your name:
Jane
your first name is Jane
your last name is ... note that last name was not entered
-bash-3.2$

23

Exporting Variables
In a shell variables are local to that shell, i.e., they are not
passed to subshells. Command export allows you to
export a variable to the environment

Shell Command: export { variable }+

marks the specified variables for export to the environment. If
no variables are specified, a list of all the variables marked for
export during the shell session is displayed.

Utility: env { variable=value }* [command]

env assigns values to specified environment variables, and
then executes an optional command using the new
environment. If variables or command are not specified, a list
of the current environment is displayed.

24

Exporting Variables
$ export ...list my current exports.
export TERM ...set in my ".profile" startup file.

$ DATABASE=/dbase/db ...create a local variable.
$ export DATABASE ...mark it for export.
$ export ...note that it's been added.
export DATABASE
export TERM

$ env ...list the environment.
DATABASE=/dbase/db
HOME=/home/strammsack
LOGNAME=strammsack
PATH=:/bin:/usr/bin
SHELL=/bin/bash
TERM=xterm
USER=glass

$ bash ...create a subshell.
$ echo $DATABASE ...a copy was inherited.
/dbase/db
$ ^D ...terminate subshell.
$ _

25

Exporting Variables
The bash shell command set tells the shell that all shell
variables be exported to any subshells created

Shell command: set -o allexport

Tell the shell to export all variables to subshells.

26

Read-Only Variables
To protect a variable against modification use:

Shell Command: readonly { variable }*

makes the specified variables read-only, protecting them
against future modification.

If no variables are specified, a list of the current read-only
variables is displayed.

Copies of exported variables do not inherit their read-only
status.

27

Predefined Variables
figure 6-13

28

29

30

