Bash (Bourne Again Shell)

B The standard shell of Linux

® major shell commands include:

B alias, bg, builtin, case..in..esac, cd, declare, dirs, env, export,
fg, for..do..done, function, history, if..then..clif..then..else..f1,
jobs, kill, local, popd, pushd, read, readonly, return,
select..do..done, set, source, trap, unalias, unset,
until..do..done, while..do..done

B bash 1s installed at /bin/bash, /bin/sh 1s link to /bin/bash

Bash (Bourne Again Shell)

B Features of Bash new or different from the previous
discussion

& variable manipulation

® command-line processing, aliases, and history

| arithmetic, conditional expressions, control structures
| directory stack

| job control

B shell functions

Bash Startup

B Bash starts just like any program

| 3as login shell

® cxecutes commands in .bash profile

B 3s normal invocation

® ecxecutes commands 1n file .bashrc

8 may want to call .bashrc from within .bash profile

Variables

B creation and use of shell variables are for:
® Value assignment and access
® Defining and using lists of values
| Testing a value or for existence of a variable

® Reading or writing a variable's value

Variables

B Simple variable -- creation/assignment
® {value = name}

B ¢.g. gameswon=12

® built-in command sef displays all variables set in shell

Accessing simple variables

® Sname Replaced by the value of name.

® $/name} Replaced by the value of name. This form is
useful if the expression 1s immediately followed by an
alphanumeric that would otherwise be interpreted as part
of the variable name.

$ verb=sing ...assign a variable.

$ echo I like $verbing ...there's no variable "verbing".
[like

$ echo I like ${verb}ing ...now it works.

[like singing

$

B §/name-word! Replaced by the value of name 1f set, and
word otherwise.

-bash-3.28 ddd=${ddd- ‘date}

-bash-3.28 echo $ddd

Mon Sep 27 09:31:03 PDT 2010

-bash-3.23

-bash-3.2% echo ${asdfasdf-test}! (there is no asdfasdf)

test

B $/name+word! Replaced by word 1f name 1s set, and
nothing otherwise.

-bash-3.28 flag=1
-bash-3.28 echo ${flag+'flag is set'}

flag is set
-bash-3.2% echo ${flag2+ 'flag?2 is set'}

-bash-3.2%

B §/name=word} Assigns word to the variable name 1f

name 1s not already set. Then it is replaced by the value
of name.

-bash-3.2% echo x = ${x=10)
x=10

-bash-3.28 echo $x

10

® $/name’?word} Replaced by name if name is set. If
name 1s not set, word 1s displayed to the standard error
channel and the shell 1s exited. If word is omitted, then a
standard error message 1s displayed instead.

-bash-3.23 total=10

-bash-3.2% value=3§{total? 'total not set'}

-bash-3.2% echo $value

10

-bash-3.2% value=38{grandlotal?'grand total not set'

-bash: grandlotal: grand total not set
-bash-3.28

10

® Another example for ${name?word}

$ cat script.sh ...look at the script.
value=38{grandTlotal?'grand total is not set'}

echo done # this line is never executed.
$ script.sh ...run the script.

script.sh: grandlotal: grand total is not set

$

11

B §{#name} Replaced by the length of the value of name.

B ${#name[*] } Replaced by the number of elements in
the array name.

B ${name:t+word } Work like their counterparts that do not
contain a :, except that name must be set and non-null
instead of just set.

& ${name:=word }
& ${name:?word }

® ${name:t+word }

12

B $/name#ipattern} Removes a leading pattern from name.
The expression 1s replaced by the value of name 1f name
doesn't begin with pattern, and with the remaining suffix if 1t
does. This form removes the smallest matching pattern.

${name##pattern} This form removes the largest matching
pattern

-bash-3.28 echo SPWD
/home/krings/CS270

-bash-3.2% echo SHOME
/home/krings

-bash-3.28 echo ${PWD#$HOME/}
CS270

-bash-3.2% echo ${PWD#3SHOME}
/CS270

13

${name%pattern! Removes a trailing pattern from name.
The expression 1s replaced by the value of name 1f name
doesn't end with pattern, and with the remaining prefix if it
does. This form removes the smallest matching pattern.

S{name%%pattern} This form removes the largest
matching pattern.

-bash-3.2$ testfile=menu.sh
-bash-3.28 echo ${testfile%o.sh}.bak

menu.bak

-bash-3.2%

14

[.1st Variables

B List variables (arrays) are created with declare. Simply
using the variable 1n an array format will also work.

® Shell command: declare [-ax] [listname]
| [f the named variable does not already exist, 1t is created.

| [f an array name 1s not specified when -a is used, declare will
display all currently defined arrays and their values.

| [f the -x option 1s used, the variable 1s exported to subshells.
declare writes 1ts output in a format that can be used again as
input commands. This 1s useful when you want to create a
script that sets variables as they are set in your current
environment.

15

[.1st Variables

B cxample for declare

$ declare -a teamnames

$ teamnames[0]="Dallas Cowboys"

$ teamnames[l]="Washington Redskins"
$ teamnames[2]="New York Giants"

& if you omit the declare command, the other lines will still
work as expected.

16

Accessing List Variables

B When accessing array values, you can always put braces
around the variable name to explicitly distinguish it from
other text that might be around 1it.

Figure 6-6. Accessing the value(s) of a list

variable.
${namelindex]} Access the indexth element of the array
$name.
${name[*]} or Access all elements of the array $name.
${name[@]}
${#name[*]} or Access the number of elements in the
${#name[@]} array $name.

$ echo "There are ${#teamnames[*]} teams in the NFL"
There are 32 teams in the NFL
$ echo "They are: ${teamnames[*]}"

17

Building Lists
® You can build an array in one of two ways.

| [f you know how many elements you will need, you can use
the declare built-in command to define the space and assign
the values 1nto specific locations 1n the list.

® [f you don't know, or don't care, how many elements will be
in the list, you can simply list them and they will be added in
the order you specify.

18

Building Lists: example

declare -a teamnames
teamnames[0]="Dallas Cowboys"
teamnames[1]="Washington Redskins"
teamnames[2]="New York Giants"

A A A A A

teamnames[31]="Houston Texans"

® This can also be done 1n a single (long) command:

$ declare -a teamnames
$ teamnames=([0]="Dallas Cowboys" \
[1]="Washington Redskins" \

[31]="Houston Texans")

B or simply type

$ teamnames = ("Dallas Cowboys" "Washington Redskins" \
"New York Giants" "New York Jets" \

"Houston Texans")

19

Building Lists: example

® How many elements are counted in the array?

® As many as are assigned

? mylist[O]=27

? mylist[5]=30

? echo ${#mylist[*]} . ..nhumber of elements in mylist[]
2

? declare -a ...display defined element values
d

.eclare -a mylist='([0]="27" [5]="30")"
?

B it shows 2 and not 6 elements

20

Destroying Lists

B List variables are deallocated by using built-in command
unset

B Shell command: unset name

unset name/index]

B deallocates specific variable or element 1n list variable

? unset teamnames[17]

21

Reading a Variable from stdin

® Shell Command: read { variable }+

® read one line from standard input and then assigns successive
words from the line to the specified variables.

® Any words that are left over are assigned to the last-named

variable.
$ cat script.sh ...list the script.
echo "Please enter your name: \c"
read name # read just one variable.
echo your name is $%$name # display the variable.
$ bash script.sh ...run the script.
Please enter your name: Joe Blow
your name 1is Joe Blow ...whole 1line was read.

$

22

Reading a Variable from stdin

B Reading multiple variables

-bash-3.2% cat script.sh

echo "Enter your name:
read firstname lastname

echo your first name is $firstname
echo your last name is $lastname

-bash-3.2% ./script.sh
Enter your name:

Joe Blow

your first name 1is Joe
your last name 1is Blow
-bash-3.2%

-bash-3.2% ./script.sh
Enter your name:

Jane

your first name 1is Jane
your last name 1is
-bash-3.2%

note that last name was not entered

23

Exporting Variables

® In a shell variables are local to that shell, 1.e., they are not
passed to subshells. Command export allows you to
export a variable to the environment

® Shell Command: export { variable }+

® marks the specified variables for export to the environment. If
no variables are specified, a list of all the variables marked for
export during the shell session 1s displayed.

& Utility: env { variable=value }* [command |

® env assigns values to specified environment variables, and
then executes an optional command using the new
environment. If variables or command are not specified, a list
of the current environmentzis displayed.

Exporting Variables

$ export
export TERM

$ DATABASE=/dbase/db
$ export DATABASE

$ export

export DATABASE
export TERM

$ env
DATABASE=/dbase/db
HOME=/home/strammsack
LOGNAME=strammsack
PATH=:/bin:/usr/bin
SHELL=/bin/bash
TERM=xterm

USER=glass

$ bash

$ echo $DATABASE
/dbase/db

$ "D

$

...List my current exports.
.set in my ".profile" startup file.

.create a local variable.

..mark it for export.
.note that it's been added.

.list the environment.

.Create a subshell.
.a copy was inherited.

.terminate subshell.

25

Exporting Variables

® The bash shell command set tells the shell that all shell
variables be exported to any subshells created

® Shell command: set -o allexport

| Tell the shell to export all variables to subshells.

26

Read-Only Variables

® To protect a variable against modification use:

® Shell Command: readonly { variable }*

® makes the specified variables read-only, protecting them
against future modification.

® [fno variables are specified, a list of the current read-only
variables is displayed.

® (Copies of exported variables do not inherit their read-only
status.

27

Predetined Variables

® figure 6-13

Name Value

$- The current shell options assigned from the command
line or by the built-in set commanddiscussed later.

$$ The process ID of this shell.

$! The process ID of the last background command.

$# The number of positional parameters.

$? The exit value of the last command.

$@ An individually quoted list of all the positional
parameters.

$_ The last parameter of the previous command.

$BASH The full pathname of the Bash executable.

$BASH_ENV Location of Bash's startup file (default is ~/.bashrc).

$BASH_VERSINFO
$BASH_VERSION
$DIRSTACK

$ENV

$EUID

A read-only array of version information.
Version string.
Array defining the directory stack (discussed later).

If this variable is not set, the shell searches the user's
home directory for the ".profile" startup file when a
new login shell is created. If this variable is set, then
every new shell invocation runs the script specified by
ENV.

Read-only value of effective user ID of user running
Bash.

28

$HISTFILE

$HISTFILESIZE

$HISTSIZE

$HOSTNAME
$HOSTTYPE
$IFS

$LINES

$MAILCHECK
$OLDPWD
$OSTYPE
$PPID

$PPID

Location of file containing shell history (default
~/.bash_history).

Maximum number of lines allowed in history file
(default is 500).

Maximum number of commands in history (default is
500).

Hostname of machine where Bash is running.
Type of host where Bash is running.

When the shell tokenizes a command line prior to its
execution, it uses the characters in this variable as
delimiters. IFS usually contains a space, a tab, and a
newline character.

Used by select to determine how to display the
selections.

How often (seconds) to check for new mail.

The previous working directory of the shell.
Operating system of machine where Bash is running.
The process ID number of the shell's parent.

Read-only process ID of the parent process of Bash.

29

$PPID
$PPID
$PS1

$PS2

$PS3

$PWD
$RANDOM
$REPLY
$SHLVL

$UID

The process ID number of the shell's parent.
Read-only process ID of the parent process of Bash.

This contains the value of the command-line prompt,
and is $ by default. To change the command-line
prompt, simply set PS1 to a new value.

This contains the value of the secondary command-line
prompt that is displayed when more input is required
by the shell, and is > by default. To change the
prompt, set PS2 to a new value.

The prompt used by the select command, #? by
default.

The current working directory of the shell.
A random integer.
Set by a select command.

Level of shell (incremented once each time a Bash
process is started, it shows how deeply the shell is
nested).

Read-only value of user ID of user running Bash.

30

