Interprocess Communication
® Based on book chapter 12.6

® How do two processes communicate? We will look at:
| Pipes

& Sockets

Interprocess Communication

® Pipes

® An interprocess communication mechanism allowing two or
more processes to send information to each other.

® They are commonly used from within shells to connect the
standard output of one utility to the standard input of another.




Interprocess Communication

® Consider $ who | wc -1

& option -1 outputs total number of lines in input

who

Y

Pipe > we

Bytes from "who" flow
through the pipe to "wc"

& both processes run concurrently; pipe buffers and protects
against overflow; suspends reader until more data becomes
available...

3

Unnamed Pipes

@ System Call: int pipe (int fd [2])

& pipe () creates an unnamed pipe and returns two file
descriptors;

® the descriptor associated with the "read" end of the pipe is
stored in fd[0],

& the descriptor associated with the "write" end of the pipe is
stored in fd[1].




Unnamed Pipes

® The following rules apply to processes that read from a
pipe:

® [f a process reads from a pipe whose write end has been
closed, the read () returns a 0, indicating end-of-input.

® [fa process reads from an empty pipe whose write end is still
open, it sleeps until some input becomes available.

® [fa process tries to read more bytes from a pipe than are
present, all of the current contents are returned and read ()
returns the number of bytes actually read.

Unnamed Pipes

® The following rules apply to processes that write to a
pipe:

| [fa process writes to a pipe whose read end has been closed,
the write fails and the writer 1s sent a SIGPIPE signal.

® The default action of this signal is to terminate the writer.

| [f a process writes fewer bytes to a pipe than the pipe can
hold, the write () is guaranteed to be atomic; that 1s, the
writer process will complete its system call without being
preempted by another process.

| [fa process writes more bytes to a pipe than the pipe can
hold, no similar guarantees of atomicity apply.




Unnamed Pipes

@ executing the following code will create the data
structure shown

int fd [2];
pipe (fd);

Write end ¥

fd [0]
fd [1]

> Pipe >

Read end

Unnamed Pipes

® Unnamed pipes are usually used for communication
between a parent process and its child, with one process
writing and the other process reading. The typical
sequence of events is as follows:

® The parent process creates an unnamed pipe using pipe ().

® The parent process forks.

® The writer closes its read end of the pipe, and the designated
reader closes its write end of the pipe.

® The processes communicate by using write () and read () calls.

® Each process closes its active pipe descriptor when finished
with it.




Unnamed Pipes

® Example that allows parent to read message from child
via a pipe

® pote that child includes NULL terminator as part of the

message
9
$ cat talk.c ...list the program.
#include <stdio.h>
#define READ 0 /* The index of the read end of the pipe */
#define WRITE 1 /* The index of the write end of the pipe */
char* phrase = "Stuff this in your pipe and smoke it";
main ()

int fd [2], bytesRead;
char message [100]; /* Parent process' message buffer */
pipe (fd); /*Create an unnamed pipe */
if (fork () == 0) /* Child, writer */
{
close(fd[READ]); /* Close unused end */
write (fd[WRITE],phrase, strlen (phrase) + 1); /* include NULL*/
close (fd[WRITE]); /* Close used end*/

}
else /* Parent, reader*/
{
close (fd[WRITE]); /* Close unused end */
bytesRead = read (fd[READ], message, 100);
printf ("Read %d bytes: %s\n", bytesRead, message); /* Send */
close (fd[READ]); /* Close used end */
}
}
$ ./talk ...run the program.

Read 37 bytes: Stuff this in your pipe and smoke it
$




Unnamed Pipes

® Example of chaining two programs
& parent creates pipe
® cach end attaches its stin or stout to the pipe (via dup2)

® both processes exec

$ cat connect.c ...list the program.
#include <stdio.h>
#define READ 0
#define WRITE 1
main (argc, argv)
int argc;
char* argv [1;

int fd [2];

pipe (fd); /* Create an unnamed pipe */

if (fork () != 0) /* Parent, writer */

{

close (fd[READ]); /* Close unused end */
dup2 (fd[WRITE], 1); /* Duplicate used end to stdout */
close (fd[WRITE]); /* Close original used end */
execlp (argv[1l], argv[1l], NULL); /* Execute writer program */
perror ("connect"); /* Should never execute */

}
else /* Child, reader */

{
close (fd[WRITE]); /* Close unused end */
dup2 (fd[READ], ©); /* Duplicate used end to stdin */
close (fd[READ]); /* Close original used end */
execlp (argv[2], argv[2], NULL); /* Execute reader program */
perror ("connect"); /* Should never execute */

}
}
$ who ...execute "who" by itself.
glass pts/1 Feb 15 18:45 (:0.0)
$ ./connect who wc ...pipe "who" through "wc".
1 6 42 ...1 1line, 6 words, 42 chars.
$




Named Pipes

® Named pipes (FIFOs) are less restricted than unnamed
pipes, and offer the following advantages:

® They have a name that exists in the file system.
® They may be used by unrelated processes.

® They exist until explicitly deleted.

@ All of the pipe rules mentioned for unnamed pipes apply

Named Pipes

® Because named pipes exist as special files in the file
system, processes using them to communicate need not
have a common ancestry as when using unnamed pipes.

® A named pipe (FIFO) may be created in one of two ways:
® by using the Linux mkfifo utility or the mkfifo() system call
& Utility: mkfifo fileName

® mkfifo creates a named pipe called fileName.




Named Pipes

@ cxample

$ mkfifo myPipe ...Create pipe.

$ chmod ug+rw myPipe ...update permissions.
$ 1s -1 myPipe ...examine attributes.
Prw-rw---- 1 glass cs © Feb 27 12:38 myPipe
$

n..n

® Note the type of the named pipe is "p" in the /s listing.

mkfifo ("myPipe", 0660); /* Create a named pipe */

Named Pipes

® Named Pipes operation:
® 3 special file is added into the file system
® once opened by open(),

® write() puts data into the FIFO queue

® read() removes data at end of FIFO queue

B process closes pipe using close()

® when no longer needed remove pipe from file system using
unlink()




® Example using a reader and a writer

#include <stdio.h>
#include <sys/types.h>
#include <fcntl.h>
/********************************************************************/
main ()
{
int fd;
char str[100];
mkfifo ("aPipe", 0660); /* Create named pipe */
fd = open ("aPipe", O _RDONLY); /* Open it for reading */
while (readLine (fd, str)) /* Display received messages */
printf ("%s\n", str);
close (fd); /* Close pipe */

/********************************************************************/

readLine (fd, str)
int fd;
char* str;
/* Read a single NULL-terminated line into str from fd */
/* Return 0 when the end-of-input is reached and 1 otherwise */
{

int n;

do /* Read characters until NULL or end-of-input */

{

n = read (fd, str, 1); /* Read one character */

}
while (n > 0 && *str++ 1= 0);
return (n > 0); /* Return false if end-of-input */

}

17

The writer.c program looks like this:

#include <stdio.h>
#include <fcntl.h>
i*******************************************************************
/
main ()

{

int fd, messagelen, i;

char message [100];

/* Prepare message */

sprintf (message, "Hello from PID %d", getpid ());
messagelen = strlen (message) + 1;

do /* Keep trying to open the file until successful */

{
fd = open ("aPipe", O_WRONLY); /*Open named pipe for writing */

if (fd == -1) sleep (1); /* Try again in 1 second */
}
while (fd == -1);
for (i = 1; i <= 3; i++) /* Send three messages */
{

write (fd, message, messagelen); /* Write message down pipe */
sleep (3); /* Pause a while */
}
close (fd); /* Close pipe descriptor */
}




