
Signals
Based on chapter 12.5 of text

What if something unexpected or unpredictable happens?

a floating-point error

a power failure

an alarm clock "ring" (discussed soon)

the death of a child process

a termination request from a user (i.e., a Control-C)

a suspend request from a user (i.e., a Control-Z)

1

Signals
These kind of events are often called interrupts

i.e., they interrupt the normal flow of the program to service
an interrupt handler

When Linux recognizes such event it sends
corresponding signal,

e.g., floating point error: kernel sends offending process
signal number 8

2

Signals
Who can send signals?

the kernel

any process can send any other process a signal as long as it
has permission

receiving process suspends its current flow of control

executes signal handler

resumes original flow when signal handler finishes

3

Signals
Why do we care about signals?

we can use them to

“protect” our program from Control-C

arrange for alarm clock to terminate a long running program

let our calendar pop up a window

etc...

4

Signal Types
Two signal types

standard signal (traditional unix signals)

delivered to a process by setting a bit in a bitmap

one for each signal

thus there cannot be multiple instances of the same signal; bit
can be one (signal) or zero (no-signal)

real-time signals (or queued signals)

defined by POSIX 1003.1b where successive instances of the
same signal are significant and need to be properly delivered.

In order to use queued signals, you must use the sigaction ()
system call, rather than signal ()

5

Defined Signals
Where are signals defined?

Signals are defined in /usr/include/signal.h

other platform-specific header files

e.g., /usr/include/asm/signal.h

Programmer may chose that

particular signal triggers a user-defined signal handler

triggers the default kernel-supplied handler

signal is ignored

6

Defined Signals
Default handler usually does the following

terminates the process and generates a dump of memory in a
core file (core)

terminates the process without generating a core image file
(quit)

ignores and discards the signal (ignore)

suspends the process (stop)

resumes the process

7

8

Terminal Signals
Easiest way to send signal to foreground process

press Control-C or Control-Z

when terminal driver recognizes a Control-C it sends SIGINT
signal to all of the processes in the current foreground job

Control-Z causes SIGSTP to be sent

by default

SIGINT terminates a process

SIGTSTP suspends a process

9

Requesting Alarm Signal
System Call: unsigned int alarm (unsigned int count)

alarm () instructs the kernel to send the SIGALRM signal to
the calling process after count seconds. If an alarm had
already been scheduled, it is overwritten. If count is 0, any
pending alarm requests are cancelled.

alarm () returns the number of seconds that remain until the
alarm signal is sent.

The default handler for this signal displays the message
"Alarm clock" and terminates the process

10

Alarm Signal
example

$ cat alarm.c ...list the program.
#include <stdio.h>
main ()
{
 alarm (3); /* Schedule an alarm signal in three seconds */
 printf ("Looping forever...\n");
 while (1);
 printf ("This line should never be executed\n");
}

$./alarm ...run the program.
Looping forever...
Alarm clock ...occurs three seconds later.
$ _

11

Handling Signals
How do you override the default action in the previous
example?

the signal() system call may be used

System Call: void (*signal (int sigCode, void (*func)
(int))) (int)

signal () allows a process to specify the action that it will take
when a particular signal is received.

The parameter sigCode specifies the number of the signal
that is to be reprogrammed

12

Handling Signals
func may be one of several values:

SIG_IGN indicates that the specified signal should be ignored
and discarded.

SIG_DFL indicates that the kernel's default handler should be
used.

an address of a user-defined function, which indicates that the
function should be executed when the specified signal arrives.

13

Handling Signals
valid signal numbers are from "/usr/include/signal.h" (and the
other header files that includes, the actual signal definitions
are in "/usr/include/asm/signal.h" on his Linux machine).

signals SIGKILL and SIGSTP may not be reprogrammed.

a child process inherits signal settings from its parent during
fork (). When process performs exec (), previously ignored
signals remain ignored but installed handlers are set back to
the default handler.

with the exception of SIGCHLD, signals are not stacked,
e.g., if a process is sleeping and three identical signals are
sent to it, only one of the signals is actually processed.

signal () returns the previous func value associated with
sigCode if successful; otherwise it returns -1.14

Handling Signals
What is the “problem” with the example below?

$ cat alarm.c ...list the program.
#include <stdio.h>
main ()
{
 alarm (3); /* Schedule an alarm signal in three seconds */
 printf ("Looping forever...\n");
 while (1);
 printf ("This line should never be executed\n");
}

15

Handling Signals
System Call: int pause (void)

pause () suspends the calling process and returns when the
calling process receives a signal.

It is most often used to wait efficiently for an alarm signal.
pause () doesn't return anything useful.

to enhance efficiency the previous program is modified to
wait for a signal.

also a custom signal handler is installed

16

Modified example
$ cat handler.c ...list the program.
#include <stdio.h>
#include <signal.h>
int alarmFlag = 0; /* Global alarm flag */
void alarmHandler (); /* Forward declaration of alarm handler */
/***/
main ()
{
 signal (SIGALRM, alarmHandler); /* Install signal handler */
 alarm (3); /* Schedule an alarm signal in three seconds */
 printf ("Looping...\n");
 while (!alarmFlag) /* Loop until flag set */
 {
 pause (); /* Wait for a signal */
 }
 printf ("Loop ends due to alarm signal\n");
}
/***/
void alarmHandler ()
{
 printf ("An alarm clock signal was received\n");
 alarmFlag = 1;
}
$./handler ...run the program.
Looping...
An alarm clock signal was received ...occurs three seconds later.
Loop ends due to alarm signal
$ _

17

Handling Signals
Sometimes we want to protect critical pieces of code
against Control-C attacks and other such signals

save previous value of the handler so that it can be restored
after the critical code has executed

in the following example SIGINT is “disabled”

18

19

$ cat critical.c ...list the program.
#include <stdio.h>
#include <signal.h>
main ()
{
 void (*oldHandler) (); /* To hold old handler value */
 printf ("I can be Control-C'ed\n");
 sleep (3);
 oldHandler = signal (SIGINT, SIG_IGN); /* Ignore Control-C */
 printf ("I'm protected from Control-C now\n");
 sleep (3);
 signal (SIGINT, oldHandler); /* Restore old handler */
 printf ("I can be Control-C'ed again\n");
 sleep (3);
 printf ("Bye!\n");
}
$./critical ...run the program.
I can be Control-C'ed
^C ...Control-C works here.
$./critical ...run the program again.
I can be Control-C'ed
I'm protected from Control-C now
^C ...Control-C is ignored.
I can be Control-C'ed again
Bye!
$ _

Handling Signals
Process may send signal to other process by using kill()

often misunderstood as “killing another process”, but not all
kill signals do that

System Call: int kill (pid_t pid, int sigCode)

sends the signal with value sigCode to the process with PID
pid. kill () succeeds and the signal is sent as long as at least
one of the following conditions is satisfied:

The sending process and the receiving process have the same
owner.

The sending process is owned by a super-user.

20

Handling Signals
There are a few variations on the way that kill () works:

If pid is 0, the signal is sent to all of the processes in the
sender's process group.

If pid is -1 and the sender is owned by a super-user, the signal
is sent to all processes, including the sender.

If pid is -1 and the sender is not a super-user, the signal is
sent to all of the processes owned by the same owner as the
sender, excluding the sending process.

If the pid is negative and not -1, the signal is sent to all of the
processes in the process group.

If kill () manages to send at least one signal successfully, it
returns 0; otherwise, it returns -1.21

Handling Signals
When child terminates

child process sends SIGCHLD to parent

parent often installs a handler to deal with this signal

parent typically executes a wait() to accept the child’s
termination code (such child is not zombie anymore)

Alternatively, the parent can choose to ignore SIGCHLD
signals, in which case the child de-zombifies automatically.

22

example
The example below does the following

The parent process installs a SIGCHLD handler that is
executed when its child process terminates.

The parent process forks a child process to execute the
command.

The parent process sleeps for the specified number of
seconds. When it wakes up, it sends its child process a
SIGINT signal to kill it.

If the child terminates before its parent finishes sleeping, the
parent's SIGCHLD handler is executed, causing the parent to
terminate immediately.

23

$ cat limit.c ...list the program.
#include <stdio.h>
#include <signal.h>
int delay;
void childHandler ();
/**/
main (argc, argv)
int argc;
char* argv[];
{
 int pid;
 signal (SIGCHLD, childHandler); /* Install death-of-child handler */
 pid = fork (); /* Duplicate */
 if (pid == 0) /* Child */
 {
 execvp (argv[2], &argv[2]); /* Execute command */
 perror ("limit"); /* Should never execute */
 }
 else /* Parent */
 {
 sscanf (argv[1], "%d", &delay); /* Read delay from command line */
 sleep (delay); /* Sleep for the specified number of seconds */
 printf ("Child %d exceeded limit and is being killed\n", pid);
 kill (pid, SIGINT); /* Kill the child */
 }
}
/**/
void childHandler () /* Executed if the child dies before the parent */
{
 int childPid, childStatus;
 childPid = wait (&childStatus); /* Accept child's termination code */
 printf ("Child %d terminated within %d seconds\n", childPid, delay);
 exit (/* EXITSUCCESS */ 0);
}

24

Handling Signals
Run example

$./limit 5 ls ...run the program; command finishes OK.
a.out alarm critical handler limit
alarm.c critical.c handler.c limit.c
Child 4030 terminated within 5 seconds
$./limit 4 sleep 100 ...run it again; command takes too long.
Child 4032 exceeded limit and is being killed
$ _

25

Handling Signals
Suspending and resuming processes

The SIGSTOP and SIGCONT signals suspend and resume a
process, respectively.

They are used by the Linux shells to support job control to
implement built-in commands like stop, fg, and bg.

following example:

create two children

suspend and resume one child

terminate both children

26

$ cat pulse.c ...list the program.
#include <signal.h>
#include <stdio.h>
main ()
{
 int pid1;
 int pid2;
 pid1 = fork();
 if (pid1 == 0) /* First child */
 {
 while (1) /* Infinite loop */
 {
 printf ("pid1 is alive\n");
 sleep (1);
 }
 }
 pid2 = fork (); /* Second child */
 if (pid2 == 0)
 {
 while (1) /* Infinite loop */
 {
 printf ("pid2 is alive\n");
 sleep (1);
 }
 }
 sleep (3);
 kill (pid1, SIGSTOP); /* Suspend first child */
 sleep (3);
 kill (pid1, SIGCONT); /* Resume first child */
 sleep (3);
 kill (pid1, SIGINT); /* Kill first child */
 kill (pid2, SIGINT); /* Kill second child */
}

27

Process Groups
What happens when you Control-C a program that
created several children?

typically the program and its children terminate

why the children?

28

Process Groups
In addition to having unique ID, process also belongs to
a process group

Several processes can be members of the same process
group.

When a process forks, the child inherits its process group
from its parent.

A process may change its process group to a new value by
using setpgid ().

When a process execs, its process group remains the same.

29

Process control terminal
Every process can have an associated control terminal.

This is typically the terminal where the process was started.

When a process forks, the child inherits its control terminal
from its parent.

When a process execs, its control terminal stays the same.

Every terminal can be associated with a single control
process.

When a metacharacter such as a Control-C is detected, the
terminal sends the appropriate signal to all of the processes in
the process group of its control process.

30

How the shell uses this

When an interactive shell begins, it is the control process of a
terminal and has that terminal as its control terminal.

When a shell executes a foreground process, the child shell
places itself in a different process group before exec'ing the
command, and takes control of the terminal. Any signals
generated from the terminal thus go to the foreground
command rather than the original parent shell. When the
foreground command terminates, the original parent shell
takes back control of the terminal.

When a shell executes a background process, the child shell
places itself in a different process group before exec'ing, but
does not take control of the terminal. Any signals generated
from the terminal continue to go to the shell. If the
background process tries to read from its control terminal, it
is suspended by a SIGTTIN signal.

31

Fig 12-49 Control terminals and process groups

32

Process Groups
System Call: pid_t setpgid (pid_t pid, pid_t pgrpId)

setpgid () sets the process group ID of the process with PID
pid to pgrpId.

System Call: pid_t getpgid (pid_t pid)

getpgid () returns the process group ID of the process with
PID pid.

33

