
Process Management
Based on chapter 12.4 of text

What is a process?

an unique instance of a running or runable program

code

data

stack

process ID

1

Process Management
Creating a new process

The only way to create a process is to duplicate an existing
process

When Linux is started the init process is the only process
(PID 1)

init is ancestors to all other processes

2

Process Management
Process duplication

almost identical

same code, data, stack

except...

PID, PPID...

child can replace code with another executable

child termination is communicated back to parent

3

Process Management
How a shell runs a utility (Fig 12-31)

4

Process Management

5

Process Creation
System Call: pid_t fork (void)

fork () causes a process to duplicate.

The child process is an almost-exact duplicate of the original
parent process; it inherits a copy of its parent's code, data,
stack, open file descriptors, and signal table.

However, the parent and child have different process ID
numbers and parent process ID numbers.

If fork () succeeds, it returns the PID of the child to the
parent process, and returns 0 to the child process.

If it fails, it returns -1 to the parent process, and no child is
created.

6

Process Creation
Process ID

System Call: pid_t getpid (void)

System Call: pid_t getppid (void)

getpid () and getppid () return a process's ID and parent
process's ID numbers, respectively.

They always succeed.

The parent process ID number of PID 1 is 1.

7

Process Creation
fork()

#include <stdio.h>
main ()
{
 int pid;
 printf ("I'm the original process with PID %d and PPID %d.\n",
 getpid (), getppid ());
 pid = fork (); /* Duplicate. Child and parent continue from here */
 if (pid != 0) /* pid is non-zero, so I must be the parent */
 {
 printf ("I'm the parent process with PID %d and PPID %d.\n",
 getpid (), getppid ());
 printf ("My child's PID is %d\n", pid);
 }
 else /* pid is zero, so I must be the child */
 {
 printf ("I'm the child process with PID %d and PPID %d.\n",
 getpid (), getppid ());
 }
 printf("PID %d terminates.\n",getpid ());/*Both procs execute this */
} 8

Process Creation
now execute this code...

$./myfork ...run the program.
I'm the original process with PID 13292 and PPID
13273.
I'm the parent process with PID 13292 and PPID 13273.
My child's PID is 13293.
I'm the child process with PID 13293 and PPID 13292.
PID 13293 terminates. ...child terminates.
PID 13292 terminates. ...parent terminates.
$ _

warning: it is dangerous for a parent to terminate without waiting for the
death of its child. The only reason that the parent doesn't wait for its child in
this example is because we haven't yet described the wait () system call!

9

Orphan Process
What if the parent dies before its child?

the child becomes an orphan

it is automatically adopted by the init process

recall init has PID 1

10

Orphan Process
Insert some code, e.g., a sleep() command into the child
to ensure that parent finished first

now look at the parent process IDs

$./orphan ...run the program.
I'm the original process with PID 13364 and PPID 13346.
I'm the parent process with PID 13364 and PPID 13346.
PID 13364 terminates.
I'm the child process with PID 13365 and PPID 1.
PID 13365 terminates.
$ _

11

Process Termination
System Call: void exit (int status)

exit () closes all of a process's file descriptors, deallocates its
code, data, and stack, and then terminates the process.

When a child process terminates, it sends its parent a
SIGCHLD signal and waits for its termination code status to
be accepted.

Only the lower eight bits of status are used, so values are
limited to 0255.

The kernel ensures that all of a terminating process's children
are orphaned and adopted by "init" by setting their PPID to 1.

 The "init" process always accepts its children's termination
codes. exit () never returns.12

Process Termination
exit () cont.

A parent accepts a child's termination code by executing
wait (), which is described shortly.

A process that is waiting for its parent to accept its return
code is called a zombie process

termination code ($status in C-shell, $? in other shells)

% cat myexit.c ...list the program.
#include <stdio.h>
main ()
{
 printf ("I'm going to exit with return code 42\n");
 exit (42);
}
% ./myexit ...run the program.
I'm going to exit with return code 42
% echo $status ...display the termination code.
42

13

Zombie Process
What happens when parent does not accept return code?

What if parent terminates before child?

no problem, init adopt the orphan and always accepts the
return code

What if parent is alive but never executes a wait()?

child’s return code will never be accepted

child will remain zombie

A zombie process doesn't have any code, data, or stack, so it
doesn't use up many system resources, but it does continue to
inhabit the system's task list.

14

Zombie Process
example of zombie creation

$ cat zombie.c ...list the program.
#include <stdio.h>
main ()
{
 int pid;
 pid = fork (); /* Duplicate */
 if (pid != 0) /* Branch based on return value from fork () */
 {
 while (1) /* Never terminate, never execute a wait () */
 sleep (1000);
 }
 else
 {
 exit (42); /* Exit with a silly number */
 }
}

15

Zombie Process
example of zombie creation

$./zombie & ...execute the program in the background.
[1] 15896
$ ps ...obtain process status.
PID TTY TIME CMD
15870 pts2 00:00:00 bash ...the shell.
15896 pts2 00:00:00 zombie ...the parent.
15897 pts2 00:00:00 zombie <defunct> ...the zombie.
15898 pts2 00:00:00 ps
$ kill 15896 ...kill the parent process.
[1] + Terminated ./zombie
$ ps ...notice the zombie is gone now.
PID TTY TIME CMD
15870 pts2 00:00:00 bash
15901 pts2 00:00:00 ps
$ _

16

System Call: pid_t wait (int* status)

causes a process to suspend until one of its children
terminates. A successful call to wait () returns the pid of the
child that terminated and places a status code into status :

If the rightmost byte of status is zero, the leftmost byte
contains the low eight bits of the value returned by the child's
call to exit () or return ().

If the rightmost byte is nonzero, the rightmost seven bits are
equal to the number of the signal that caused the child to
terminate, and the remaining bit of the rightmost byte is set to
1 if the child produced a core dump.

If a process executes a wait () and has no children, wait ()
returns immediately with -1.

If a process executes a wait () and one or more of its children
are already zombies, wait () returns immediately with the
status of one of the zombies.

17

$ cat mywait.c ...list the program.
#include <stdio.h>
main ()
{
 int pid, status, childPid;
 printf ("I'm the parent process and my PID is %d\n", getpid ());
 pid = fork (); /* Duplicate */
 if (pid != 0) /* Branch based on return value from fork () */
 {
 printf ("I'm the parent process with PID %d and PPID %d\n",
 getpid (), getppid ());
 childPid = wait (&status); /* Wait for a child to terminate. */
 printf ("A child with PID %d terminated with exit code %d\n",
 childPid, status >> 8);
 }
else
 {
 printf ("I'm the child process with PID %d and PPID %d\n",
 getpid (), getppid ());
 exit (42); /* Exit with a silly number */
 }
 printf ("PID %d terminates\n", getpid ());
}

$./mywait ...run the program.
I'm the parent process and my PID is 13464
I'm the child process with PID 13465 and PPID 13464
I'm the parent process with PID 13464 and PPID 13409
A child with PID 13465 terminated with exit code 42
PID 13465 terminates
$ _ 18

Process Management
Library Function:

int execl (const char* path, const char* arg0, const char*
arg1, ..., const char* argn, NULL)

int execv (const char* path, const char* argv[])

int execlp (const char* path, const char* arg0, const char* arg
1,..., const char* argn, NULL)

int execvp (const char* path, const char* argv[])

19

Process Management
execvl () is identical to execlp (), except...

execv () is identical to execvp (), except...

execl () and execv () require the absolute or relative
pathname of the executable file to be supplied,

execlp () and execvp () use the $PATH environment variable
to find path.

20

Process Management
If the executable is not found, the system call returns -1;
otherwise, the calling process replaces its code, data, and
stack from the executable and starts to execute the new
code.

A successful call to any of the exec system calls never
returns.

execl () and execlp () invoke the executable with the
string arguments pointed to by arg1..argn.

arg0 must be the name of the executable file itself, and the
list of arguments must be null terminated.

21

Process Management
execv () and execvp () invoke the executable with the
string arguments pointed to by argv[1]..argv[n], where
argv[n+1] is NULL.

argv[0] must be the name of the executable file itself.

22

Process Management
Using the execw function

$ cat myexec.c ...list the program.
#include <stdio.h>
main ()
{
 printf ("I'm process %d and I'm about to exec an ls -l\n",getpid ());
 execl ("/bin/ls", "ls", "-l", NULL); /* Execute ls */
 printf ("This line should never be executed\n");
}

$./myexec ...run the program.
I'm process 13623 and I'm about to exec an ls -l
total 125
-rw-r--r-- 1 glass cs 277 Feb 15 00:47 myexec.c
-rwxr-xr-x 1 glass cs 24576 Feb 15 00:48 myexec
$ _

23

Process Management
Changing Priorities

process priority value

value between -20 and +19

small priority levels means the process will run faster

only super-user and kernel processes can have negative
priority values

login shell has value 0

24

Process Management
Being “nice”

child inherits parents priority value, but can change it

Library Function: int nice (int delta)

nice () adds delta to a process's current priority value. Only a
super-user may specify a delta that leads to a negative priority
value. Legal priority values lie between -20 and +19. If a delta
is specified that takes a priority value beyond a limit, the
priority value is truncated to the limit.

If nice () succeeds, it returns the new nice value; otherwise it
returns -1. Note that this can cause problems, since a nice
value of -1 is legal.

25

Process Management
experiment using nice()

$ cat mynice.c ...list the source code.
#include <stdio.h>
main ()
{
 printf ("original priority\n");
 system ("ps -l"); /* Execute a ps */
 nice (0); /* Add 0 to my priority */
 printf ("running at priority 0\n");
 system ("ps -l"); /* Execute another ps */
 nice (10); /* Add 10 to my priority */
 printf ("running at priority 10\n");
 system ("ps -l"); /* Execute the last ps */
}

26

Process Management
and run it...

$ mynice ...execute the program.
original priority
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY CMD
0 S 500 1290 1288 0 76 0 - 552 rt_sig pts/4 ksh
0 S 500 1549 1290 0 76 0 - 583 wait4 pts/4 a.out
0 S 500 1550 1549 0 80 0 - 889 - pts/4 ps
running at priority 0 ...adding 0 doesn't change it.
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY CMD
0 S 500 1290 1288 0 76 0 - 552 rt_sig pts/4 ksh
0 S 500 1549 1290 0 75 0 - 583 wait4 pts/4 a.out
0 S 500 1551 1549 0 78 0 - 638 - pts/4 ps
running at priority 10 ...adding 10 makes them run slower.
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY CMD
0 S 500 1290 1288 0 76 0 - 552 rt_sig pts/4 ksh
0 S 500 1549 1290 0 90 10 - 583 wait4 pts/4 a.out
0 S 500 1552 1549 0 87 10 - 694 pts/4 ps
$ _

27

Process Management
get real or effective ID of process: System Call:

uid_t getuid ()

uid_t geteuid ()

gid_t getgid ()

gid_t getegid ()

getuid () and geteuid () return the calling process's real and
effective user ID, respectively. getgid () and getegid () return
the calling process's real and effective group ID, respectively.
The ID numbers correspond to the user and group IDs listed
in the "/etc/passwd" and "/etc/group" files.

These calls always succeed.
28

Process Management
set real or effective ID of process: System Call:

int setuid (uid_t id)

int seteuid (uid_t id)

int setgid (gid_t id)

int setegid (gid_t id)

seteuid () and setegid () set the calling process's effective user
and group ID, respectively. setuid () and setgid () set the
calling process's effective and real user and group ID,
respectively, to the specified value.

These calls succeed only if executed by a super-user, or if id is
the real or effective user (group) ID of the calling process.
They return 0 if successful; otherwise, they return -1.

29

Process Management
sample program: background processing

$ cat background.c ...list the program.
#include <stdio.h>
main (argc, argv)
int argc;
char* argv [];
{
 if (fork () == 0) /* Child */
 {
 execvp (argv[1], &argv[1]); /* Execute other program */
 fprintf (stderr, "Could not execute %s\n", argv[1]);
 }
}
$ background sleep 60 ...run the program.
$ ps ...confirm that it is in background.
PID TTY TIME CMD
10742 pts0 00:00:00 bash
10936 pts0 00:00:01 ksh
15669 pts0 00:00:00 csh
16073 pts0 00:00:00 sleep 60
16074 pts0 00:00:00 ps
$ _

30

Process Management
Redirection

When a process forks, the child inherits a copy of its parent's
file descriptors.

When a process execs, all non-close-on-exec file descriptors
remain unaffected, including the standard input, output, and
error channels.

The Linux shells use these two pieces of information to
implement redirection.

31

Process Management
For example, say you type the following command at a terminal:
ls > ls.out

The parent shell forks and then waits for child shell to terminate.

The child shell opens the file "ls.out," creating it or truncating it as
necessary.

The child shell then duplicates the file descriptor of "ls.out" to the
standard output file descriptor, number 1, and then closes the original
descriptor of "ls.out". All standard output is therefore redirected to
"ls.out".

The child shell then exec's the ls utility. Since the file descriptors are
inherited during an exec (), all of the standard output of ls goes to "ls.out".

When the child shell terminates, the parent resumes. The parent's file
descriptors are unaffected by the child's actions, as each process maintains
its own private descriptor table.

32

Process Management
example

$ cat redirect.c ...list the program.
#include <stdio.h>
#include <fcntl.h>
main (argc, argv)
int argc;
char* argv [];
{
 int fd;
 /* Open file for redirection */
 fd = open (argv[1], O_CREAT | O_TRUNC | O_WRONLY, 0600);
 dup2 (fd, 1); /* Duplicate descriptor to standard output */
 close (fd); /* Close original descriptor to save descriptor space */
 execvp (argv[2], &argv[2]); /* Invoke program; will inherit stdout */
 perror ("main"); /* Should never execute */
}
$ redirect ls.out ls -lG ...redirect "ls -lG" to "ls.out".
$ cat ls.out ...list the output file.
total 5
-rw-r-xr-x 1 glass 0 Feb 15 10:35 ls.out
-rw-r-xr-x 1 glass 449 Feb 15 10:35 redirect.c
-rwxr-xr-x 1 glass 3697 Feb 15 10:33 redirect
$ _ 33

