
Profiling
How do you know what your program does?

How much time does your program spend in which function?

How often are specific functions called?

What can this tell us?

Which functions take more/less time than you expected?

Which functions get called more/less than you expected?

1

Profiling
Profiling requires

compiling and linking the program with profiling enabled

running the program to generate profiling data

running a profiler (e.g., gprof) to analyze the profiling data

2

Profiling
Profiling can do more than just

see how much time we spend where

how often a function is called

etc.

Profiling can be used to detect ongoing attacks

let’s take a look at an attack as it unfolds in time

the demo is from an attack called hiperbomb2

Let’s look at the latter first...

3

Page: Axel W. Krings SSGRR Presentation 2001

Profiles

!We view a system as a collection of profiles of its
functionalities Pi

k is the number of functionalities active during !t
!Functionality Profile

fj(!t) is the number of times identity Fj has been invoked during !t

Page: Axel W. Krings SSGRR Presentation 2001

Attack Signatures

!Atomic Attacks Ai
– the smallest attack technology unit
– e.g. a port sweep, sequence of unsuccessful login attempts

!Attack Signature Si
– the portion of a profile that is attributable to Ai

 " is a one-to-one mapping from indices of Si to indices of
the identities Fj profiled

Page: Axel W. Krings SSGRR Presentation 2001

!Attack Signature over Time
– Example: “teardrop”

 (overlapping IP(TCP) fragments are formatted to cause reassembly
crashes)

Attack Signature

Functions i

Time [s]

Frequency

A Three-Dimensional Profile

What does it look like?

Page: Axel W. Krings SSGRR Presentation 2001

! Example “teardrop”

Attack Signature

Functions i

Frequency

Page: Axel W. Krings SSGRR Presentation 2001

Real-Time Attack Recognition

!Vector Analysis
– Profile Pi(!t), Idle Signature S0(!t), and Attack Signature Si(!t) are

vectors

! “Strictly Speaking”
– there are three possible scenarios

Page: Axel W. Krings SSGRR Presentation 2001

Signature Analysis

– Relationship between Signatures

– Common functions

– Signature Correlation

Page: Axel W. Krings SSGRR Presentation 2001

! Example “teardrop” vs. “bonk”
– bonk: malformed IP header causes packet size violation upon reassembly
– Note: scales differ
– Correlation is 1.0

Attack Signature

teardrop attack bonk attack

Page: Axel W. Krings SSGRR Presentation 2001

! Example “teardrop” vs. “gewse”
– Gewse: (DoS - attack) floods identd on port 139
– Note: scales differ
– Correlation is 0.54

Attack Signature

teardrop attack gewse attack

Page: Axel W. Krings SSGRR Presentation 2001

Correlation
! “Some things seem too good to be true”

Profiling
GNU Profiler: gprof

Utility: gprof -b [executableFile [profileFile]]

gprof generates a table of time and repetitions of each function
in the executable executableFile based on the performance
trace stored in the file profileFile. If profileFile or
executableFile are omitted, "gmon.out" or "a.out" is assumed
respectively.

The executable file must have been compiled using the -pg
option of gcc, which instructs the compiler to generate special
code that writes a "gmon.out" file when the program runs.

The gprof utility looks at this output file after the program has
terminated and displays the information. The output of gprof is
verbose (but helpful); to instruct gprof to be brief, use the -b
option.

15

Profiling
For more information on GNU gprof check out

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html#SEC1

the rest of the profiling discussion presented here is based on
their discussion and the examples are restated

note that the authors are using cc rather than gcc. Check your
Linux system and you will likely see a link from cc to gcc

16

Profiling
Execution to generate profiling data

Compilation must specify the -pg option

this option works with compilation and linking

Deterministic vs nondeterministic execution

does you program depend on the value of arguments?

how about other dependencies, e.g., time, file size, number of
users etc. -- all of that may or will have changed the next time
you run the program

Program must exit normally for the file gmon.out to be
generated

17

Profiling
Flat Profile

shows the total number of time spent in each function

unless explicitly indicated (-z option) zero time functions are
not listed

a function not compiled with -pg is indistinguishable from a
function that was never called

18

Profiling
example from above cited source

19

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.34 0.02 0.02 7208 0.00 0.00 open
 16.67 0.03 0.01 244 0.04 0.12 offtime
 16.67 0.04 0.01 8 1.25 1.25 memccpy
 16.67 0.05 0.01 7 1.43 1.43 write
 16.67 0.06 0.01 mcount
 0.00 0.06 0.00 236 0.00 0.00 tzset
 0.00 0.06 0.00 192 0.00 0.00 tolower
 0.00 0.06 0.00 47 0.00 0.00 strlen
 0.00 0.06 0.00 45 0.00 0.00 strchr
 0.00 0.06 0.00 1 0.00 50.00 main
 0.00 0.06 0.00 1 0.00 0.00 memcpy
 0.00 0.06 0.00 1 0.00 10.11 print
 0.00 0.06 0.00 1 0.00 0.00 profil
 0.00 0.06 0.00 1 0.00 50.00 report

Profiling
Interpretation of example

functions mcount and profile are part of profiling and their
time represents pure profiling overhead

columns

% time: total execution time of program spent in this function

cumulative seconds: time spent in the function and everything
above it in the table

self seconds: time spent in the function alone, which is the
time that determines the position of the function in the list

calls: the total number of times the function was called. A
function that was never called or was not compiled for
profiling will show a blank field here.

20

Profiling
Interpretation of example

columns, cont.

self ms/call: the average number of milliseconds spent in the
function per call

total ms/call: average number of ms spent in this function and
its dependents per call

name: the name of the function

21

Profiling
Call Graph

A dependency graph reflecting the caller callee relationship

Static call graph

shows all dependancies the program implies

Dynamic call graph

the call graph as it unfolds during execution

22

Profiling
gprof call graph

shows ho much time was spent in each function and its
children

can use to find functions that may not use much time, but that
call functions that use much time.

23

Profiling
example from above cited source

24

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
index % time self children called name
 <spontaneous>
[1] 100.0 0.00 0.05 start [1]
 0.00 0.05 1/1 main [2]
 0.00 0.00 1/2 on_exit [28]
 0.00 0.00 1/1 exit [59]

 0.00 0.05 1/1 start [1]
[2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]

 0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]
 0.00 0.03 8/8 timelocal [6]
 0.00 0.01 1/1 print [9]
 0.00 0.01 9/9 fgets [12]
 0.00 0.00 12/34 strncmp <cycle 1> [40]
 0.00 0.00 8/8 lookup [20]
 0.00 0.00 1/1 fopen [21]
 0.00 0.00 8/8 chewtime [24]
 0.00 0.00 8/16 skipspace [44]

[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole>![4]
 0.01 0.02 244+260 offtime <cycle 2> [7]
 0.00 0.00 236+1 tzset <cycle 2> [26]

Profiling
Interpretation of example

dashed lines divide table into entries

one entry for each function

entry many have one or more lines

primary line is indicate by number in [] and shows associated
function name

preceding lines of entry describe callers (i.e., parents)

succeeding lines describe its subroutines (i.e., children)

entries are sorted by how much time is spent in the function
and its subroutines (i.e., children)

25

Profiling
Primary line

e.g.: index % time self children called name

e.g.: [3] 100.0 0.00 0.05 1 report [3]

columns
index: index number of the consecutively numbered function
% time: fraction of total time spent in this function, including
time spent in its children
self: amount of time spent by the function
children: total amount of time spent in its children
called: number of times the function was called
name: name of the current function (with index repeated)

26

Profiling
cycles, e.g.
[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]

 0.01 0.02 244+260 offtime <cycle 2> [7]

 0.00 0.00 236+1 tzset <cycle 2> [26]

columns
name: If function is part of cycle of recursion, the cycle
number is printed between the function’s name and the
index number

e.g. function offtime is part of <cycle 2>

27

Profiling
Lines for a Function’s Caller

function’s entry has a line for each function it was called by

index % time self children called name
...
 0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]

self: estimate on time spent in function report itself when it
was called from main

children: estimate of time spent in children of report when it
was called from main

called: x/y, x=#of times report was called from main, y= total
number of non-recursive calls to report from all its callers

28

Profiling
Lines for a Function’s Subroutines (children)

function’s entry has a line for each of its subroutines

index % time self children called name
...
[2] 100.0 0.00 0.05 1 main [2]
 0.00 0.05 1/1 report [3]

self: estimate of time spent directly within report when report
was called from main.

children: estimate of time spent in children of report when it
was called from main

called: x/y, x=#of calls to report from main, y= total number
of non-recursive calls to report

29

Profiling
Statistical inaccuracy of grpof output

gprof samples run-times => subject to statistical inaccuracy

sampling period is given at top of flat profile

e.g. Each sample counts as 0.01 seconds.

run-time info is accurate if it is considerably larger than the
sampling period. Why is that?

Number of calls are derived by counting, not sampling

30

Profiling
Statistical inaccuracy of grpof output

Get more accuracy by running program longer; use -s option
of grpof

1. Run your program once.
2. Issue the command `mv gmon.out gmon.sum'.
3. Run your program again, the same as before.
4. Merge the new data in `gmon.out' into `gmon.sum' with this command:
gprof -s executable-file gmon.out gmon.sum

5. Repeat the last two steps as often as you wish.
6. Analyze the cumulative data using this command:
gprof executable-file gmon.sum > output-file

31

Debugging
The GNU debugger gdb allows to symbolically debug a
program. You can

run and list the program

set breakpoints

examine variable values

trace execution

32

Debugging
Utility: gdb executableFilename

gdb is a standard GNU/Linux debugger.

The named executable file is loaded into the debugger and a
user prompt is displayed.

To obtain information on the various gdb commands, enter
help at the prompt.

Read the debugging section of the book and play with the
debugger!

This is something you need to do at your own pace.
33

strip
What does the debugger or profiler add to the code?

Extra code to do the things it does

This is pure overhead

One can strip this code with strip

Synopsis: strip { fileName }+

strip removes all of the symbol table, relocation, debugging,
and profiling information from the named files.

34

