Binary Search example

® restated from Mastering Algorithms with Perl, O'Reilly,
1999 http://oreilly.com/catalog/9781565923980.
BINARY-SEARCH(A, w)

low = O
high = length[A]

while low < high
do try = int ((low + high) / 2)
if Altry]l > w
then high = try
else if Aftry] < w
then low = try + 1
else
return try
end if
end do
return NO_ELEMENT

Binary Search

® In our program, each word is represented in Perl as a
scalar, which can be an integer, a foating-point number,
or (as in this case) a string of characters.

® The list of words is stored in a Perl array: an ordered list of
scalars.

® Perl Notation:
® Scalars begin with a $ sign,
® Arrays begin with an @ sign.
® Hashes begin with a % sign.

® Recall that hashes (aka associative arrays) “map” one set of
scalars (the “keys”) to other scalars (the “values”).

Binary Search

$index = binary_search(\@array, $word)
Qarray is a list of lowercase strings in alphabetical order.
$word is the target word that might be in the list.
Dbinary_search() returns the array index such that $array[$index]
is $word.
sub binary_search {
my ($array, $word) = @_;
my ($low, $high) = (0, @Parray - 1);
while ($low <= $high) { # While the window is open
my $try = int(($low+$high) /2); # Try the middle element

$low = $try+1l, next if $array->[$try] 1t $word; # Raise bottom
$high = $try-1, next if $array->[$try] gt $word; # Lower top
return $try; # We’ve found the word!

¥

return; # The word isn’t there.

Binary Search

next
The next command is like the continue statement in C; it starts the next iteration
of the loop:

1. LINE: while (<STDIN>) {

2. next LINE if /"#/; # discard comments
3. Heuo
4.

Binary Search

my creates a local (scope) variable
\@array is a reference to the array named.
@_ arguments to the subroutine.

my ($array, $word) = @_;, assigns the first two subroutine argu-
ments to the scalars $array and $word.

my ($low, $high) = (0, @Parray - 1); declares and initializes
two more scalars.

— $low is initialized to O—actually unnecessary, but good form.

— $high is initialized to @$array - 1, which dereferences the scalar
variable $array to get at the array underneath. In this context,
the statement computes the length (@$array) and subtracts 1 to
get the index of the last element.

5

#!/usr/bin/perl
#
bsearch - search for a word in a list of alphabetically ordered words

Usage: bsearch word filename

$word = shift; # Assign first argument to $word
chomp(Q@array = <>) # Read in newline-delimited words,
truncating the newlines
($word, @array) = map lc, ($word, @array); # Convert all to lowercase
$index = binary_search(\@array, $word); # Invoke our algorithm

if (defined $index) { print "$word occurs at position $index.\n" }
else { print "$word doesn’t occur.\n" }

sub binary_search {

my ($array, $word) = @_;

my $low = O;

my $high = @$array - 1;

while ($low <= $high) {
my $try = int(($low+$high) / 2);
$low = $try+1, next if $array->[$try] 1t $word;
$high = $try-1, next if $array->[$try] gt $word;
return $try;

}

return;

Binary Search

® Try it out
® 9% perl bsearch.pl binary /usr/dict/words
| 9% perl bsearch.pl binary /usr/share/dict/words # OS X

® binary occurs at position 22369.

