
Shell Programs (Scrips)
Shell commands can be listed in text file to be executed

Requires changing permissions to execute

how does one do that?

To execute just type the file name, e.g., ./my-script

Which shell is the script written for? How does this affect
the execution?

1

Shell Programs (Scrips)
System decides which shell the script is written for by
examining the first line of the script

if first line is just #

use the calling shell to execute the script

if first line is of form #! pathName

use executable program specified by pathName to execute the
script

if neither of the above rules applie

use Bash

2

Shell Programs (Scrips)
Example

$ cat > script.csh ...create the C shell script.

#!/bin/csh
This is a sample C shell script.
echo -n the date today is # in csh, -n omits newline
date # output today’s date
^D ...end-of-input.

$ cat > script.ksh ...create the Korn shell script.
#!/bin/ksh
This is a sample Korn shell script.
echo "the date today is \c" # in ksh, \c omits the nl
date # output today's date.
^D ...end-of-input.

3

Shell Programs (Scrips)
output

$ chmod +x script.csh script.ksh ...make them executable.
$ ls -lFG script.csh script.ksh ...look at attributes.
-rwxr-xr-x 1 glass 138 Feb 1 19:46 script.csh*
-rwxr-xr-x 1 glass 142 Feb 1 19:47 script.ksh*
$./script.csh ...execute the C shell script.
the date today is Tue Feb 1 19:50:00 CST 2005
$./script.ksh ...execute the Korn shell script.
the date today is Tue Feb 1 19:50:05 CST 2005
$ _

4

Subshells or Child Shells
What shell is executing?

when you log into system an initial login shell is executed

which executes any simple command

however sometimes the shell creates a new shell (child
process) to perform tasks

5

Shell Programs (Scrips)
Child shells are created when:

grouped commands are executed, e.g., ls; pwd; date

a script is executed. If the script is not executed in
background, the parent shell sleeps until child shell
terminates

when background job is executed, parent shell creates child
shell to execute this background command.

parent and child shells run concurrently

6

Shell Programs (Scrips)
shell contains two data areas:

1. environment space

2. local variable space

7

source: fig 5-10 of textbook

Example
$ pwd ...display my login shell's current dir.

/home/glass
$ (cd /; pwd) ...the subshell moves and executes pwd.
/ ...output comes from the subshell.
$ pwd ...my login shell never moved.
/home/glass
$ _

8

Variables
Two kinds of variables:

Local variables

Environmental variables

Both variables hold data in a string format

What is the difference”

Child shell inherits environment variables from parent,

but not its data variables

9

Environment variables
Predefined environment variables, common to all shells

how does on display them?

10

Environment variables
-bash-3.2$ echo HOME = $HOME, PATH = $PATH

HOME = /home/krings, PATH = /usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin

-bash-3.2$

-bash-3.2$ echo MAIL = $MAIL

MAIL = /var/spool/mail/krings

-bash-3.2$

-bash-3.2$ echo USER = $USER, SHELL = $SHELL, TERM=$TERM

USER = krings, SHELL = /bin/bash, TERM=xterm

-bash-3.2$

11

Variables
Declare local variables, e.g.,

-bash-3.2$ firstname=Carl

-bash-3.2$ lastname=Strammsack

-bash-3.2$ echo $firstname $lastname

Carl Strammsack

-bash-3.2$

12

Variables
Now export lastname to make it an environment variable

-bash-3.2$ export lastname

-bash-3.2$ sh

sh-3.2$ echo $firstname $lastname

Strammsack

sh-3.2$ exit

-bash-3.2$ echo $firstname $lastname

Carl Strammsack

13

Variables
Special built-in shell variables

14

Variables
examples of using common special variables
$ cat script.sh ...list the script.
echo the name of this script is $0
echo the first argument is $1
echo a list of all the arguments is $*
echo this script places the date into a temporary file
echo called $1.$$
date > $1.$$ # redirect the output of date.
ls $1.$$ # list the file.
rm $1.$$ # remove the file.
$./script.sh paul ringo george john ...execute it.
the name of this script is script.sh
the first argument is paul
a list of all the arguments is paul ringo george john
this script places the date into a temporary file
called paul.24321
paul.24321
$ _ 15

Quoting
Quoting and wildcard-replacement

Single quotes (') inhibit wildcard replacement, variable
substitution, and command substitution.

Double quotes (") inhibit wildcard replacement only.

When quotes are nested, only the outer quotes have any
effect.

16

Quoting
Quoting and wildcard-replacement

-bash-3.2$ echo my name is $lastname: date is `date`

my name is Strammsack: date is Wed Sep 22 10:41:11 PDT
2010

-bash-3.2$ echo 'my name is $lastname: date is `date` '

may name is $lastname: date is `date`

-bash-3.2$ echo "my name is $lastname: date is `date` "

my name is Strammsack: date is Wed Sep 22 10:43:35 PDT
2010

17

Script example: here.sh
consider the following script:
-bash-3.2$ cat here.sh
#! /bin/sh

mail $1 << ENDOFTEXT
Dear $1,
 Please see me regarding some exciting news!
- $USER
ENDOFTEXT
echo mail sent to $1
-bash-3.2$

18

Script example: here.sh
execute the script:
-bash-3.2$./here.sh krings
mail sent to krings
-bash-3.2$

19

Script example: here.sh
Verify what the script did
-bash-3.2$ mail
Mail version 8.1 6/6/93. Type ? for help.
"/var/spool/mail/krings": 1 message 1 new
>N 1 krings@eternium.cs.u Wed Sep 22 10:48 15/549
&
Message 1:
From krings@eternium.cs.uidaho.edu Wed Sep 22 10:48:36 2010
X-Original-To: krings
Delivered-To: krings@eternium.cs.uidaho.edu
To: krings@eternium.cs.uidaho.edu
Date: Wed, 22 Sep 2010 10:48:36 -0700 (PDT)
From: krings@eternium.cs.uidaho.edu (Axel Krings)

Dear krings,
 Please see me regarding some exciting news!
- krings

20

Job control
Processes and control

ps

generates list of processes and their attributes, including their
name, process ID number, controlling terminal, and owner

kill

allows you to terminate a process based on its ID number

wait

allows a shell to wait for one of its child processes to terminate

21

Process Status: ps
Figure 5-13. Description of the ps command.

Utility: ps -efl

ps generates a listing of process status information. By default,
the output is limited to processes created by your current shell.
The -e option instructs ps to include all running processes. The -f
option causes ps to generate a full listing. The -l option generates
a long listing. The meaning of each ps column is described in the
text that follows.

22

Process Status: ps
ps output column meaning (source fig 5-15 of text)

23

Process Status: ps
ps process state codes (source: textbook)

24

Signaling Processes: kill
from man page:

The command kill sends the specified signal to the specified
process or process group.

If no signal is specified, the TERM signal is sent. The
TERM signal will kill processes which do not catch this
signal.

For other processes, it may be necessary to use the KILL (9)
signal, since this signal cannot be caught.

Most modern shells have a builtin kill function, with a usage
rather similar to that of the command described here.

25

Signaling Processes: kill
Utility/Shell Command:

kill [-signalId] {pid }+

default is -15 = TERM signal

for list of legal signal names use kill -l

kill -9 unconditional kill

26

Wait for child: wait
Shell Command: wait [pid]

wait causes the shell to suspend until the child process with
the specified process ID number terminates.

If no arguments are supplied, the shell waits for all of its
child processes.

27

The $PATH
PATH indicates the default search paths the system
indicates, separated by “:”

echo $PATH

my output is: /usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin

Why is the current directory “.” not included?

e.g., a.out versus ./a.out ????

28

