
ELF
• Executable and Linkable Format

• Standard file format for

• executables

• object code

• shared libraries

• core dumps

1

2

source: Tool Interface Standards (TIS) Portable Formats Specification, Version 1.1

3

Another view
source: Wikipedia

Relocatable Object Files

• Format of
typical ELF
relocatable
object file

.data

.symtab

.rel.text

.rel.data

.debug

0!

.text

.bss

ELF header!

Sections

.strtab

Section header table!

.line

Describes
object file

sections

.rodata

4

ELF Section examples

• .text: machine code of compiled program

• .data: initialized global C variables

• .bss: uninitialized data

• .symtab: a symbol table with info about functions and global
variables

• .line: mapping between line numbers in the original C source
program and machine code instructions in .text section.
Only exists if -g compile option was used

• .debug: debugging symbol table
5

6

ELF

• What is the motivation for having sections?

• What is a process image?

• Why don’t we just load everything jumbled
together into the process image, e.g., as in DOS?

7

ELF

• Motivation is

• how modern machine architectures
allocate memory, e.g., 4kB pages (frames)

• memory manager can set attributes on
pages, e.g., read-only. What happens
when you write to read-only memory?

• allocating memory for initialized vs
uninitialized variables

8

ELF
• What happens when kernel loads & runs an

executable?

• its starts looking at image header to see how
it should load the image

• locates .text section with executable, load it
in read-only pages of memory

• then it loads .data section of the executable
into user space (read-write memory)

• locates .bss section from image header and
adds appropriate pages of memory, zeroing
out the pages.

9

readelf with file header option -h
[krings@eternium /bin]$ readelf -h ./ls
ELF Header
 Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
 Class: ELF64
 Data: 2's complement, little endian
 Version: 1 (current)
 OS/ABI: UNIX - System V
 ABI Version: 0
 Type: EXEC (Executable file)
 Machine: Advanced Micro Devices X86-64
 Version: 0x1
 Entry point address: 0x402460
 Start of program headers: 64 (bytes into file)
 Start of section headers: 89256 (bytes into file)
 Flags: 0x0
 Size of this header: 64 (bytes)
 Size of program headers: 56 (bytes)
 Number of program headers: 8
 Size of section headers: 64 (bytes)
 Number of section headers: 31
 Section header string table index: 30

10

What does this tell us?

• executable was created for AMD X86-64
architecture

• when executed it will start running from virtual
address 0x402460. That is not main() though, but
a _start procedure, created by the linker

• program has 31 sections, 8 segments

• ...

11

12

readelf -S ./ls
There are 31 section headers, starting at offset 0x15ca8:

Section Headers:
 [Nr] Name Type Address Offset
 Size EntSize Flags Link Info Align
 [0] NULL 0000000000000000 00000000
 0000000000000000 0000000000000000 0 0 0
...
 [13] .text PROGBITS 0000000000402460 00002460
 000000000000c228 0000000000000000 AX 0 0 16
 [14] .fini PROGBITS 000000000040e688 0000e688
 000000000000000e 0000000000000000 AX 0 0 4
 [15] .rodata PROGBITS 000000000040e6a0 0000e6a0
 000000000000382f 0000000000000000 A 0 0 32
 ...
 [26] .bss PROGBITS 0000000000614820 00014820
 0000000000000538 0000000000000000 WA 0 0 32
...

Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

13

14

15

