
1

Segmentation

• May be unequal, dynamic size
• Simplifies handling of growing data

structures
• Allows programs to be altered and

recompiled independently
• Lends itself to sharing data among

processes
• Lends itself to protection

2

Segment Tables

• Corresponding segment in main memory
• Each entry contains the length of the

segment
• A bit is needed to determine if segment

is already in main memory
• Another bit is needed to determine if the

segment has been modified since it was
loaded in main memory

3

Segment Table Entries

4

5

Combined Paging and
Segmentation

• Paging is transparent to the programmer
• Segmentation is visible to the

programmer
• Each segment is broken into fixed-size

pages

6

Combined Segmentation and
Paging

7

8

9

Fetch Policy

• Fetch Policy
– Determines when a page should be brought

into memory
– Demand paging only brings pages into

main memory when a reference is made to a
location on the page

• Many page faults when process first started
– Prepaging brings in more pages than

needed
• More efficient to bring in pages that reside

contiguously on the disk

10

Placement Policy

• Determines where in real memory a
process piece is to reside

• Important in a segmentation system
• Paging or combined paging with

segmentation hardware performs address
translation

11

Replacement Policy

• Placement Policy
– Which page is to be replaced?
– Page removed should be the page least

likely to be referenced in the near future
– Most policies predict the future behavior on

the basis of past behavior

12

Replacement Policy

• Frame Locking
– If frame is locked, it may not be replaced
– Kernel of the operating system
– Control structures
– I/O buffers
– Associate a lock bit with each frame

13

Basic Replacement
Algorithms

• Optimal policy
– Selects for replacement that page for which

the time to the next reference is the longest
– Impossible to have perfect knowledge of

future events
– This policy is “wishful thinking”, but can

serve as a base-line when post-evaluating
different policies

14

Basic Replacement
Algorithms

• Least Recently Used (LRU)
– Replaces the page that has not been

referenced for the longest time
– By the principle of locality, this should be

the page least likely to be referenced in the
near future

– Each page could be tagged with the time of
last reference. This would require a great
deal of overhead.

15

Basic Replacement
Algorithms

• First-in, first-out (FIFO)
– Treats page frames allocated to a process as

a circular buffer
– Pages are removed in round-robin style
– Simplest replacement policy to implement
– Page that has been in memory the longest is

replaced
– These pages may be needed again very soon
– Performs relatively poorly

16

Basic Replacement
Algorithms

• Clock Policy
– Additional bit called a use bit
– When a page is first loaded in memory, the use bit

is set to 1
– When the page is referenced, the use bit is set to 1
– When it is time to replace a page, the first frame

encountered with the use bit set to 0 is replaced.
– During the search for replacement, each use bit set

to 1 is changed to 0

17

18

19

20

Comparison of Placement
Algorithms

case study: page size = 256 words

