
1

Memory Management

• Subdividing memory to accommodate
multiple processes

• Memory needs to be allocated to ensure
a reasonable supply of ready processes
to consume available processor time

2

Memory Management
Requirements

• Relocation
– Programmer does not know where the

program will be placed in memory when it
is executed

– While the program is executing, it may be
swapped to disk and returned to main
memory at a different location (relocated)

– Memory references must be translated in
the code to actual physical memory address

3

4

Memory Management
Requirements

• Protection
– Processes should not be able to reference memory

locations in another process without permission
– Impossible to check absolute addresses at compile

time
– Must be checked at run time
– Memory protection requirement must be satisfied

by the processor (hardware) rather than the
operating system (software)

• Operating system cannot anticipate all of the memory
references a program will make

5

Memory Management
Requirements

• Sharing
– Allow several processes to access the same

portion of memory
– Better to allow each process access to the

same copy of the program rather than have
their own separate copy

6

Memory Management
Requirements

• Logical Organization
– Programs are written in modules
– Modules can be written and compiled

independently
– Different degrees of protection given to

modules (read-only, execute-only)
– Share modules among processes

7

Memory Management
Requirements

• Physical Organization
– Memory available for a program plus its

data may be insufficient
• Overlaying allows various modules to be

assigned the same region of memory
– Programmer does not know how much

space will be available

8

Fixed Partitioning

• Equal-size partitions
– Any process whose size is less than or equal

to the partition size can be loaded into an
available partition

– If all partitions are full, the operating
system can swap a process out of a partition

– A program may not fit in a partition. The
programmer must design the program with
overlays

9

Fixed Partitioning

• Fixed partitioning in main memory is
inefficient.
– Any program, no matter how small,

occupies an entire partition.
– What about the memory left over if the

program does not fit perfectly.
– This is called internal fragmentation.

10

11

Placement Algorithm with
Partitions

• Equal-size partitions
– Because all partitions are of equal size, it

does not matter which partition is used
• Unequal-size partitions

– Can assign each process to the smallest
partition within which it will fit

– Queue for each partition
– Processes are assigned in such a way as to

minimize wasted memory within a partition

12

13

Dynamic Partitioning

• Partitions are of variable length and
number

• Process is allocated exactly as much
memory as required

• Eventually get holes in the memory. This
is called external fragmentation

• Must use compaction to shift processes
so they are contiguous and all free
memory is in one block

14

15

Dynamic Partitioning
Placement Algorithm

• Operating system must decide which free
block to allocate to a process.
– Let’s look at some algorithms.

• Best-fit algorithm
– Chooses the block that is closest in size to the

request
– Despite its name: worst performer overall
– Since smallest block is found for process, the

smallest amount of fragmentation is left
• leaves blocks too small to reallocate

– Memory compaction must be done more often

16

Dynamic Partitioning
Placement Algorithm

• First-fit algorithm
– Scans memory form the beginning and

chooses the first available block that is large
enough

– Fastest
– May have many process loaded in the front

end of memory that must be searched over
when trying to find a free block

17

Dynamic Partitioning
Placement Algorithm

• Next-fit
– Scans memory from the location of the last

placement
– More often allocate a block of memory at

the end of memory where the largest block
is found

– The largest block of memory is broken up
into smaller blocks

– Compaction is required to obtain a large
block at the end of memory

18

19

Buddy System

• Entire space available is treated as a
single block of 2U

• If a request of size s such that
2U-1 < s <= 2U, entire block is allocated
– Otherwise block is split into two equal

buddies
– Process continues until smallest block

greater than or equal to s is generated

20

21

22

Relocation
• When program loaded into memory the actual

(absolute) memory locations are determined
• A process may occupy different partitions

which means different absolute memory
locations during execution (from swapping)

• Compaction will also cause a program to
occupy a different partition which means
different absolute memory locations

23

Addresses
• Logical

– Reference to a memory location independent of the
current assignment of data to memory

– Translation must be made to the physical address
• Relative

– Address expressed as a location relative to some
known point

• Physical
– The absolute address or actual location in main

memory

24

25

Registers Used during
Execution

• Base register
– Starting address for the process

• Bounds register
– Ending location of the process

• These values are set when the process is
loaded or when the process is swapped
in

26

Registers Used during
Execution

• The value of the base register is added to
a relative address to produce an absolute
address

• The resulting address is compared with
the value in the bounds register

• If the address is not within bounds, an
interrupt is generated to the operating
system

