
1

Deadlock Detection

•  Two phase process
–  deadlock detection

•  figure out that deadlock occurred

–  deadlock resolution
•  do something to resolve it

2

Deadlock Detection

3

Strategies once Deadlock
Detected

•  Abort all deadlocked processes
•  Back up each deadlocked process to

some previously defined checkpoint, and
restart all process
– Original deadlock may reoccur

•  Successively abort deadlocked processes
until deadlock no longer exists

•  Successively preempt resources until
deadlock no longer exists

4

Selection Criteria Deadlocked
Processes

•  Many criteria to select from, e.g.
– Least amount of processor time consumed

so far
– Least number of lines of output produced so

far
– Most estimated time remaining
– Least total resources allocated so far
– Lowest priority

5

Strengths and Weaknesses of the
Strategies

6

Dining Philosophers Problem

7

Dining Philosophers Problem

8

Dining Philosophers Problem

9

Dining Philosophers Problem

10

Dining Philosophers Problem

11

UNIX Concurrency
Mechanisms

•  Pipes
•  Messages
•  Shared memory
•  Semaphores
•  Signals

12

UNIX Pipes

•  used to carry data from one process to
another

•  one process writes into the pipe
•  the other reads from the other end
•  essentially FIFO

13

UNIX Pipes

•  Examples
–  ls | pr | lpr

•  pipe ls into the standard input of pr
•  pr pipes its standard output to lpr
•  pr in this case is called a filter

–  ls > filea
–  pr < filea > fileb

•  read input from filea and output to fileb

14

Signals

•  Signals are a facility for handling
exceptional conditions similar to
software interrupts

•  Generated by keyboard interrupt, error in
a process, asynchronous events
–  timer
–  job control

•  Kill command can generate almost any
signal

15

16

Linux Kernel Concurrency
Mechanisms

•  Includes all the mechanisms found in
UNIX

•  Atomic operations execute without
interruption and without interference

17

Linux Atomic Operations

18

Linux Atomic Operations

19

Linux Spinlocks

•  Used for protecting a critical section
•  Only one thread at a time can acquire a spinlock,

other threads will “spin” on that lock
–  internally, integer local in memory

–  if value is 0, the thread sets it to 1 and enters critical section

–  spinlocks are not very efficient
•  why? waiting threads are in busy-waiting mode
•  use when wait-times are expected to be very short

spin_lock(&lock)
/*critical section */
spin_unlock(&lock)

20

Linux Kernel Concurrency
Mechanisms

•  Spinlocks
–  Used for protecting a critical section

21

22

Memory Barrier

•  A class of instructions
•  Enforces that CPU executes memory

operations in order

•  Why would one need to enforce in-order
execution?

23

Memory Barrier Operations

•  Consider the following 2 processes
Proc #1:

loop: load the value of location y,
 if it is 0 goto loop

print the value in location x

Proc #2:
store the value 55 into location x
store the value 1 into location y

•  What is the output?

24

Linux Kernel Concurrency
Mechanisms

25

Solaris Thread
Synchronization Primitives

•  Mutual exclusion (mutex) locks
•  Semaphores
•  Multiple readers, single writer (readers/

writer) locks
•  Condition variables

26

27

