Deadlock Prevention

Mutual Exclusion
Must be supported by the operating system

Hold and Wait

Require a process request all of 1ts required
resources at one time

Deadlock Prevention

No Preemption

Process must release resource and request
again

Operating system may preempt a process to
require 1t releases its resources

Circular Wait

Define a linear ordering of resource types

Deadlock Avoidance

A decision 1s made dynamically whether
the current resource allocation request
will, 1f granted, potentially lead to a

deadlock

Requires knowledge of future process
request

Two Approaches to
Deadlock Avoidance

Do not start a process if 1ts demands
might lead to deadlock

Do not grant an incremental resource
request to a process 1if this allocation
might lead to deadlock

Resource Allocation Denial

Banker’ s algorithm

State of the system: the current
allocation of resources to processes

Safe state: there 1s at least one sequence
that does not result 1n deadlock

Unsafe state: a state that 1s not safe

P1
P2
P3
P4

Determination of a Safe State
Initial State

R1 R2 R3
3 2 2 P1
6 1 3 P2
3 1 < P3
< 2 2 P4
Claim matrix C
R1 R2

Lo [3 |

R1 R2 R3 R1 R2 R3
1 0 0 P1 2 2 2
6 1 2 P2 0 0 1
2 1 1 P3 1 0 3
0 0 2 P4 - 2 0
Allocation matrix A C-A

R3 R1 R2 R3
6 | [o [1t [1 |

Resource vector R

(a) Initial state

Available vector V

P1
P2
P3
P4

Determination of a Sate State
P2 Runs to Completion

R1 R2 R3 R1 R2 R3 R1 R2 R3
3 2 2 P1 1 0 0 P1 2 2 2
0 0 0 P2 0 0 0 P2 0 0 0
3 1 < P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 6 2 3
Resource vector R Available vector V

(b) P2 runs to completion

P1
P2
P3
P4

Determination of a Safe State
P1 Runs to Completion

R1 R2 R3 R1 R2 R3 R1 R2 R3
0 0 0 P1 0 0 0 P1 0 0 0
0 0 0 P2 0 0 0 P2 0 0 0
3 1 < P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 7 2 3
Resource vector R Available vector V

(c) P1 runs to completion

P1
P2
P3
P4

Determination of a Safe State
P3 Runs to Completion

R1 R2 R3 R1 R2 R3
0 0 0 P1 0 0 0 P1
0 0 0 P2 0 0 0 P2
0 0 0 P3 0 0 0 P3
4 2 2 P4 0 0 2 P4
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
[T3 [6] [®3 T 3]

Resource vector R Available vector V

(d) P3 runs to completion

—

o
(P'S]

o|lo| oo

'I I\)OOOE

Determination of an

Unsafe State

R1 R2 R3

R1 R2 R3

3 2 2 P1 1 0 0
6 1 3 P2 5 1 1
3 1 4 P3 2 1 1
4 2 2 P4 0 0 2
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3

9 3 6

P1
P2

P4

1 1 2

Resource vector R

Available vector V

(a) Initial state

R1 R2 R3
2 2 2
1 0 2
1 0 3
- 2 0

C-A

10

Determination of an
Unsafe State

R1 R2 R3 R1 R2 R3 R1 R2 R3
3 2 2 P1 2 0 1 P1 1 2 1
6 1 3 P2 5 1 1 P2 1 0 2
3 1 4 P3 2 1 1 P3 1 0 3
4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matrix A C-A
R1 R2 R3 R1 R2 R3
9 3 6 0 1 1
Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3

11

Deadlock Avoidance Logic

struct state

{
int resource[m];
int available[m];
int claim[n] [m];
int alloc[n] [m];

(a) global data structures

if (alloc [1,%*] + request [*] > claim [1i,*])

< error >; /* total request > claim*/
else if (request [*] > available [*])

< suspend process >;
else /* simulate alloc “/

{

< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = available [*] - request [*] >;

if (safe (newstate))
< carry out allocation >;
else
{
< restore original state >;
< suspend process >;

(b) resource alloc algorithm

12

Deadlock Avoidance Logic

boolean safe (state S)

{

int currentavail [m];

process rest|[<number of processes>];
currentavail = available;

rest = {all processes};

possible = true;

while (possible)

{

<find a process Py in rest such that

claim [k,*] - alloc [k,*] <= currentavail;>
if (found) /* simulate execution of Py */
{

currentavail = currentavail + alloc [k, *];

rest = rest - {Pxl;
}
else

possible = false;

}

return (rest == null);

(c¢) test for safety algorithm (banker's algorithm)

13

Deadlock Avoidance

Maximum resource requirement must be
stated 1n advance

Processes under consideration must be
independent; no synchronization
requirements

There must be a fixed number of
resources to allocate

No process may exit while holding
resources

14

