
1 

Deadlock 

•  Permanent blocking of a set of processes 
that either compete for system resources 
or communicate with each other 

•  No efficient solution 
•  Involve conflicting needs for resources 

by two or more processes 



2 



3 

Better illustrations J 



4 

Reusable Resources 
•  Used by only one process at a time and not 

depleted by that use 
•  Processes obtain resources that they later 

release for reuse by other processes 
–  E.g. Processors, I/O channels, main and secondary 

memory, devices, and data structures such as files, 
databases, and semaphores 

•  Deadlock occurs if each process holds one 
resource and requests the other 



5 

Example of Deadlock 

Now consider the following sequence: 
p0 p1 q0 q1 p2 q2 



6 

Another Example of Deadlock 

•  Space is available for allocation of 
200Kbytes, and the following sequence 
of events occur 

•  Deadlock occurs if both processes 
progress to their second request 

P1 

. . . 

. . . 
Request 80 Kbytes; 

Request 60 Kbytes; 

P2 

. . . 

. . . 
Request 70 Kbytes; 

Request 80 Kbytes; 



7 

Consumable Resources 

•  Created (produced) and destroyed 
(consumed) 

•  Interrupts, signals, messages, and 
information in I/O buffers 

•  Deadlock may occur if a Receive 
message is blocking 

•  May take a rare combination of events to 
cause deadlock 



8 

Example of Deadlock 

•  Deadlock occurs if receive is blocking 

P1 

. . . 

. . . 
Receive(P2); 

Send(P2, M1); 

P2 

. . . 

. . . 
Receive(P1); 

Send(P1, M2); 



9 

Resource Allocation Graphs 
•  Directed graph that depicts a state of the 

system of resources and processes 



10 

Resource Allocation Graphs 



11 

Conditions for Deadlock 

•  Mutual exclusion 
– Only one process may use a resource at a 

time 
•  Hold-and-wait 

– A process may hold allocated resources 
while awaiting assignment of others 

•  No preemption 
– No resource can be forcibly removed from a 

process holding it 



12 

Conditions for Deadlock 
•  Circular wait 

–  A closed chain of processes exists, such that each 
process holds at least one resource needed by the 
next process in the chain 


