Bakery Algorithm

Also called Lamport’ s bakery algorithm
after Leslie Lamport

A New Solution of Dijkstra's Concurrent Programming Problem
Communications of the ACM 17,8 (August 1974), 453-455.

This 1s a mutual exclusion algorithm to
prevent concurrent threads from entering
critical sections concurrently

source: wikipedia

Bakery Algorithm

Analogy
bakery with a numbering machine
each customer receives unique number
numbers increase by one as customers enter

global counter displays number of customer
being served currently

all others wait in queue

after baker 1s done serving customer the
next number 1s displayed

served customer leaves

Bakery Algorithm

threads and bakery analogy

when thread wants to enter critical section it
has to make sure it has the smallest number.
however, with threads it may not be true that

only one thread gets the same number
e.g., if number operation is non-atomic

1f more that one thread has the smallest number
then the thread with lowest 1d can enter

use pair (number, ID)
In this context (a,b) < (c,d) is equivalent to
(a<c) or ((a==c) and (b<d))

from wikipedia

Lo & W=

Bakery Algorithm

// declaration and initial values of global variables
Entering: array [l..N] of bool = {false};
Number: array [l..N] of integer = {0};

lock(integer 1)

{
Entering[i] = true;
Number[i] = 1 + max(Number[l], ..., Number[N]);
Entering[i] = false;
for (j = 1; j <= N; j++) {
// Wait until thread j receives its number:
while (Entering[3j]) { /* nothing */ }
// Wait until all threads with smaller numbers or with the same
// number, but with higher priority, finish their work:
while ((Number[j] != 0) && ((Number[3j], j) < (Number[i], 1i))) {
/* nothing */
}
}
}

unlock(integer i) { Number[i] = 0; }

Thread(integer 1) {
while (true) {
lock(1i);
// The critical section goes here...
unlock(1i);
// non-critical section...

Peterson s Algorithm 1981

solves critical section problem

based on shared memory for
communication

Peterson’ s Algorithm

from wikipedia

flag[0] =0
flag[1l] =0
turn =0
PO: flag[0] =1 Pl: flag[l] =1
turn = 1 turn = 0
while(flag[l] && turn == 1); while(flag[0] && turn == 0);
// do nothing // do nothing
// critical section // critical section
// end of critical section // end of critical section
flag[0] = 0 flag[l] = 0

flag value 1 means process wants to enter critical section

Semaphores

Special variable called a semaphore 1s
used for signaling

If a process 1s waiting for a signal, 1t 1s
suspended until that signal 1s sent

Semaphores

Semaphore 1s a variable that has an
integer value

May be initialized to a nonnegative number

Wait operation decrements the semaphore
value

Signal operation increments semaphore
value

Semaphore Primitives

struct semaphore {
int count;

queueType queue;
}

void semWait (semaphore s)
{
s.count—-;
if (s.count < 0)
{
place this process in s.gueue;
block this process
}
}
void semSignal (semaphore s)
{
s.count++;
if (s.count <= 0)
{
remove a process P from s.gueue;
place process P on ready list;

Figure 5.3 A Definition of Semaphore Primitives

Binary Semaphore Primitives

struct binary semaphore {
enun {zero, one} value;

queueType queue;
}i;

void semWaitB(binary semaphore s)
{

if (s.value = 1)
s.value = 0;
else
{
place this process in s.gueue;
block this process;
}
}
void semSignalB (semaphore s)
{
if (s.gueue.is _empty())
s.value = 1;
else
{
remove a process P from s.gueue;
place process P on ready list;

Figure 5.4 A Definition of Binary Semaphore Primitives

10

Assume process A,B
and C depend on result
of process D

Initially one result of D
1s available (s = 1)

®

Processor

|I A II:
- TTT111 [=1 F—TIDhE—
Blocked queue Semaphore Ready queue
@ Processor
L2 I
— TTT1T1 | s=0 — T Ja[c][p}—
Blocked queue Semaphore Ready queue
@ Processor
L2 |
T 111 [=0 F— T
Blocked queue Semaphore Ready queue
@ Processor
— P |
—— [T T T 1] s=0 }—_T [B[a[c}—
Blocked queue Semaphore Ready queue
@ Processor
< |
—— [T TT1 | s=0 — T [o[B[a}—
Blocked queue Semaphore Ready queue
@ Processor
2 I
TRl = =TT +—
Blocked queue Semaphore Ready queue
@ Processor
— P I
—— [[[8]a] 3| s=2 F—T T [[c—
Blocked queue Semaphore Ready queue

Mutual Exclusion Using
Semaphores

/* program mutualexclusion */

const int n = /* number of processes */;
semaphore s = 1;

void P(int 1)

{

while (true)

{
semWait (s) ;

/* critical section */;
semSignal (s) ;
/* remainder */;

}
}

void main ()
{

parbegin (P(1), P(2), . . ., P(n)):
}

Figure 5.6 Mutual Exclusion Using Semaphores

12

Assume 3

processes,
A,Band C

Queue for Value of

semaphore lock semaphore lock A B C

Y

l----J---

y \ 4 l

Critical
region

Normal
execution

Blocked on
semaphore
lock

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.

