
1

Threads

•  Suspending a process
–  suspends all threads of the process since all

threads share the same address space
•  Termination of a process

–  terminates all threads within the process

2

Thread States

•  States of a thread
– Spawn

•  when process is spawned
•  thread may spawn other threads
•  each thread has its own:

–  register context, state space, and place in ready queue

– Block
•  when thread waits for event

–  saves user registers, PC and stack pointer

3

Thread States

•  States of a thread
– Unblock

•  when blocking event occurs
•  thread is moved to ready queue

– Finish
•  register context and stack is deallocated

4

Remote Procedure Call Using
Single Thread

What is a RPC?

5

Remote Procedure Call Using
Threads

6

Multithreading

7

Basic questions

•  What is the difference between this and
multiprocessing?
–  kind of looks the same, or...?

•  Is there a need to synchronize threads?
–  e.g. two threads insert an element into a

linked structure

8

User-Level Threads (ULT)

•  All thread management is done by the
application
–  e.g. using threads library

•  The kernel is not aware of the existence
of threads

9

User-Level Threads

10

Thread 2 is
only
perceived as
running by
the thread
library

Thread 2
makes call
to I/O that
blocks

Time slice
expired and
other process
is executed.
Thread 2 is
still
“running”

Thread 2
needs action
from thread
1and blocks
so thread 1
can execute

11

Kernel-Level Threads (KLT)

•  Often called lightweight processes
•  Windows is an example of this approach
•  Kernel maintains context information for

the process and the threads
•  Scheduling is done on a thread basis

12

Kernel-Level Threads

13

VAX Running UNIX-Like
Operating System

14

Combined Approaches

•  Thread creation is done in user space
•  Bulk of scheduling and synchronization

of threads done within application

•  Example is Solaris

15

Combined Approaches

16

Relationship Between Threads
and Processes

17

Advantages of ULT over KLT

•  thread switching does not require kernel
mode privileges
–  saves two mode switches (user-to-kernel

and kernel-to-user)
•  application specific scheduling

–  applications may prefer their own specific
scheduling algorithm

•  ULT can run on any OS

18

Disadvant. of ULT vs KLT

•  Many OS system calls are blocking.
–  so if ULT executes such call all threads

within its process are blocked
•  In pure ULT strategy a multithreaded

application cannot take advantage of
multiprocessing
–  no concurrency

