Threads

Suspending a process

suspends all threads of the process since all
threads share the same address space

Termination of a process

terminates all threads within the process

Thread States

States of a thread

Spawn
when process 1s spawned
thread may spawn other threads
cach thread has its own:

register context, state space, and place in ready queue

Block

when thread waits for event

saves user registers, PC and stack pointer

Thread States

States of a thread
Unblock

when blocking event occurs

thread 1s moved to ready queue
Finish

register context and stack 1s deallocated

Remote Procedure Call Using
Single Thread

What 1s a RPC?
Time >
RPC RPC
Request Request
Process 1 Y LLLLLL Ll L L L

erveD Served

(a) RPC Using Single Thread

Remote Procedure Call Using
Threads
RPC @

Request

Thread A (Process 1) (L LLLLLLLL LR

Y/ LA

Gerve)

(b) RPC Using One Thread per Server (on a uniprocessor)

Thread B (Process 1)

RPC
Request

(/7774 Blocked, waiting for response to RPC
(1 Blocked, waiting for processor, which is in use by Thread B
I Running

Figure 4.3 Remote Procedure Call (RPC) Using Threads

Multithreading

Time >

Vo Request Time quantum
request complete expires

Thread A (Process 1) Aﬁa)

Thread B (Process 1) [IE_—)

/

Thread C (Process 2) Time quantum (I
expires
Process
created
XA Blocked [Ready BN Running

Figure 4.4 Multithreading Example on a Uniprocessor

Basic questions

What 1s the difference between this and
multiprocessing?

kind of looks the same, or...?

Is there a need to synchronize threads?

¢.g. two threads insert an element 1nto a
linked structure

User-Level Threads (ULT)

All thread management 1s done by the
application
e.g. using threads library

The kernel 1s not aware of the existence
of threads

User-Level Threads

SR
\ |/

Threads
Library

N4

®

User
Space

Kernel
Space

Thread 2
makes call
to I/0 that
blocks

Thread 2 is
only
perceived as
running by
the thread
library

Blocked

Coloked)

Time slice
expired and
@ other process
is executed.
Thread 2 is
still
“running”

Thread 2
needs action
from thread
land blocks
so thread 1
can execute

Colored state
is current state

Figure 4.7 Examples of the Relationships Between User-Level Thread States and Process States

10

Kernel-Level Threads (KLT)

Often called lightweight processes
Windows 1s an example of this approach

Kernel maintains context information for
the process and the threads

Scheduling 1s done on a thread basis

11

Kernel-Level Threads

N

(b) Pure kernel-level

User
Space

Kernel
Space

12

VAX Running UNIX-Like
Operating System

Table 4.1 Thread and Process Operation Latencies (us) [ANDE92]

Kernel-Level

Operation User-Level Threads Threads Processes
Null Fork 34 048 11,300
Signal Wait 37 441 1,840

13

Combined Approaches

Thread creation 1s done 1n user space

Bulk of scheduling and synchronization
of threads done within application

Example 1s Solaris

14

Combined Approaches

(¢) Combined

15

Relationship Between Threads
and Processes

Table 4.2 Relationship Between Threads and Processes

Threads:Processes

Description

Example Systems

1:1

Each thread of execution is a
unique process with its own
address space and resources.

A process defines an address
space and dvnamic resource
ownership. Multiple threads
may be created and executed
within that process.

A thread may migrate from
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Combines attributes of M:1
and 1:M cases.

Traditional UNIX
implementations

Windows NT. Solaris. Linux
0S/2. OS/390. MACH

Ra (Clouds), Emerald

TRIX

16

Advantages of ULT over KL'T

thread switching does not require kernel
mode privileges
saves two mode switches (user-to-kernel
and kernel-to-user)

application specific scheduling

applications may prefer their own specific
scheduling algorithm

ULT can run on any OS

17

Disadvant. of ULT vs KLLT

Many OS system calls are blocking.

so 1f ULT executes such call all threads
within 1ts process are blocked

In pure ULT strategy a multithreaded
application cannot take advantage of
multiprocessing

no concurrency

18

