
1

Samir Jafar, Axel Krings, Thierry Gautier and Jean-Louis Roch
Laboratoire ID-IMAG, France

axel.krings@imag.fr

This work has been supported by the Region Rhône-Alpes (Ragtime project)
 the CNRS ACI Grid-DOCG and Damascus University

Page: 2 Axel W. Krings EIT 2005 Lincoln

  Motivation and background
  Execution model
  Theft-induced checkpointing
  Experimental results
  Conclusions and Future Work

Page: 3 Axel W. Krings EIT 2005 Lincoln

  Large-Scale Global Computing Systems
–  (potentially) large number of nodes
–  volatility of nodes, e.g. dynamic run-time behavior
–  heterogeneous computing environment

  Dependability Problems
–  reliability issues of large number of nodes
–  without fault-tolerance mechanism application may be

 infeasible
»  MTBF may sink below application execution time

Page: 4 Axel W. Krings EIT 2005 Lincoln

  Computation on Cluster
–  MTBF = 2000 days (48,000h, approx. 5 1/2 years)
–  Unreliability of one node: F(t) = 1 - R(t) = 1 - e-λt

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

40
0

80
0

12
00

16
00

20
00

24
00

28
00

32
00

36
00

40
00

44
00

48
00

processeurs

pr
op

ab
ili

té
 d

e
dé

fa
ill

an
ce

Durée d'exécution : 1 jour

Durée d'exécution :10 jours

Durée d'exécution : 30 jours

Page: 5 Axel W. Krings EIT 2005 Lincoln

  Redundancy
–  Duplication

–  Checkpointing
»  uncoordinated
»  coordinated
»  communication-induced

–  Message-logging
»  optimistic
»  pessimistic
»  causal

Page: 6 Axel W. Krings EIT 2005 Lincoln

  Coordination
–  processes coordinate to build consistent global state at time of

 checkpointing or recovery

  Heterogeneity
–  checkpoint state can be restored on variety of platforms

  Scope of recovery
–  local or global recovery
–  local recovery: only roll-back of crashed process is necessary

Page: 7 Axel W. Krings EIT 2005 Lincoln

  Log-based
–  relies on logging and replaying of messages
–  process can be modeled as sequence of interval states, each one

 representing a non-deterministic event [Strom & Yemini
 1985]

  Checkpoint-based
–  periodically save global state of computation to stable storage

 [Chandy & Lamport 1985]
–  differ in the way processes are coordinated
–  and on the interpretation of a consistent global state

Page: 8 Axel W. Krings EIT 2005 Lincoln

  Coordinated checkpointing
–  coordination of all processes for building consistent state

 before writing checkpoint to safe storage
»  e.g. [Ftc-Charm++, CoCheck]

  Uncoordinated checkpointing
–  each process independently saves state
–  consistent global state is achieved in recovery phase
–  possibility of domino effect

  Communication induced checkpointing
–  compromise between coordinated and uncoordinated
–  consistent global state achieved by forcing additional

 checkpoints based on some information piggy bagged on
 application message [Baldone 1997]

Page: 9 Axel W. Krings EIT 2005 Lincoln

  Lack of solutions for
–  large parallel applications
–  dynamic execution environment
–  heterogeneous processing environment

»  potentially SMP

  Portability
–  achieved by portable languages, e.g. Java
–  or compilation into application code, e.g. Porch
–  but not on the checkpointing method itself

Page: 10 Axel W. Krings EIT 2005 Lincoln

  Motivation and background
  Execution model
  Theft-induced checkpointing
  Experimental results
  Conclusions and Future Work

Page: 11 Axel W. Krings EIT 2005 Lincoln

  Application represented by Dataflow Graph

–  G = (v,ε)

v finite set of vertices vi

ε set of edges ejk vertices vj , vk ∈ v

  Two kinds of tasks
Ti Tasks

in the traditional sense
Dj Data tasks

inputs and outputs

Page: 12 Axel W. Krings EIT 2005 Lincoln

  Kernel for Adaptive, Asynchronous Parallel Interface
–  implemented as C++ library
–  schedule programs at fine or medium granularity in distr. environment
–  KAAPI reference: http://moais.imag.fr/

  Relationship between processors and processes

Page: 13 Axel W. Krings EIT 2005 Lincoln

  Work-Stealing
–  primary method of scheduling workload
–  represents only communication between processes

  The states of a task
–  from a local process’ point of view
–  in the context of work-stealing

Page: 14 Axel W. Krings EIT 2005 Lincoln

  Motivation and background
  Execution model
  Theft-induced checkpointing
  Experimental results
  Conclusions and Future Work

Page: 15 Axel W. Krings EIT 2005 Lincoln

  State of the execution
–  based on macro dataflow graph

»  dynamic: changes during execution
»  portable: graph or portions of graph may be moved during execution

  Definition
–  The macro dataflow graph G describes a platform-independent, and

 thus portable, consistent global state of the execution of an
 application.

Page: 16 Axel W. Krings EIT 2005 Lincoln

  Definition of a checkpoint
–  Checkpoints are with respect to a process Pi
–  The checkpoint of Pi consists of the entries of Gi , the process stack

»  i.e. its tasks and their associated inputs
 and not of the task execution state on the processor itself

  Important difference:
–  one simply checkpoints the tasks and their inputs

=> platform independent
–  one does NOT checkpoint the task’s execution state

=> process context is platform dependent

–  Note: the content of a checkpoint Gi is only the dataflow graph
 representing the “future of the computation”.

Page: 17 Axel W. Krings EIT 2005 Lincoln

  Local Checkpoint
–  each process takes a “local” checkpoint

»  at the expiration of a checkpointing interval τ
  after completion of the currently executing task

  Forced Checkpoint
–  needed to address global consistency in the presence of

 communication
–  a checkpoint is takes as the result of work-stealing
–  actions on thief and victim are defined by protocol

  Both concepts will be used in the checkpointing protocol
 presented

Page: 18 Axel W. Krings EIT 2005 Lincoln

  TIC Protocol
–  victim P0 has ready-task(s)
–  thief P1 is created on idle resource and initiates a theft operation
–  each theft results in exactly 3 checkpoints

»  the checkpoints before events A and F contain only single task

Page: 19 Axel W. Krings EIT 2005 Lincoln

  Strenght of TIC: rollback of single crashed process

  Need to guarantee consistent global state of execution:

  Question 1:
 What does a process do that needs to send a message to a

 crashed process?

–  attempted communication with crashed process results in error
–  manager identifies the replacement processor

Page: 20 Axel W. Krings EIT 2005 Lincoln

  Question2:
 How can a process that is rolled back receive messages that it

 received after the last checkpoint and before the crash?

–  1) loss of theft request (event A)
–  2) crash of thief after event E but before able to checkpoint theft
–  3) crash of victim after receiving result (event G) but before being able to

 checkpoint

Page: 21 Axel W. Krings EIT 2005 Lincoln

  What is the maximum computation time loss due to rollback?
–  T1 : execution time of “parallel” application on single processor

»  note: not the same as execution time of sequential application execution
–  T∞ : execution time on unlimited number of processors
–  pi : processing time of task Ti

 Max loss = τ + max(pi)

–  But how bad can this loss be?
»  in parallel application one can always assume T∞ << T1
»  and pi ≤ T∞

Page: 22 Axel W. Krings EIT 2005 Lincoln

  Motivation and background
  Execution model
  Theft-induced checkpointing
  Experimental results
  Conclusions and Future Work

Page: 23 Axel W. Krings EIT 2005 Lincoln

  Application: DOCG
–  Combinatorial optimization, Branch & Bound algorithm
–  QAP: Quadratic Assignment Problem
–  Problem size: NUGENT 22

  Platform: iCluster2 at IMAG
–  104 dual-processor Itanium2
–  900 MHz
–  100Base Ethernet

Page: 24 Axel W. Krings EIT 2005 Lincoln

  Implemented using distributed checkpoint services
–  two checkpointing periods
–  max overhead observed: 1.5%

Page: 25 Axel W. Krings EIT 2005 Lincoln

  Differences observed
–  overhead increases as the number of processors increases

»  more forced checkpoints due to work-stealing

Page: 26 Axel W. Krings EIT 2005 Lincoln

  Theft-Induced Checkpointing was introduced
  Requires only crashed processes to be rolled back
  State of application represented in portable fashion

–  macro dataflow graph
–  platform independent description of application state

  Roll-back possible in
–  dynamic environment
–  heterogeneous infrastructure

  Experimental results indicate low checkpointing overhead
  Max roll-back loss can be controlled

–  selection of suitable period, granularity of application

Page: 27 Axel W. Krings EIT 2005 Lincoln

