Basic Algorithms

Use “use” and “modify” bits
Scan for first frame with u=0, m=0

If 1) fails look for frame with u=0, m=1,
setting the use bits to 0 during scan

If 2) failed repeating 1) and 2) will find a

replacement
1
First frame in
circular buffer
for this process
n-1 0

Page 9
not accessed
recently:
modified

not accessed

Page 13
not accessed
recently;

not modified

Page 47
not accessed
3 Last

replaced
Next Pl

replaced

not accessed
recently;
modified

not accessed
recently:

Figure 8.18 The Clock Page-Replacement Algorithm [GOLD89]

Z

Resident Set Size

Fixed-allocation

Gives a process a fixed number of pages
within which to execute

When a page fault occurs, one of the pages
of that process must be replaced

Variable-allocation

Number of pages allocated to a process
varies over the lifetime of the process

Fixed Allocation, Local Scope

Decide ahead of time the amount of
allocation to give a process

If allocation is too small, there will be a
high page fault rate

If allocation 1s too large there will be too
few programs in main memory

Variable Allocation,
Global Scope

Easiest to implement
Adopted by many operating systems

Operating system keeps list of free
frames

Free frame 1s added to resident set of
process when a page fault occurs

If no free frame, replaces one from
another process

Variable Allocation,
Local Scope

When new process added, allocate
number of page frames based on
application type, program request, or
other criteria

When page fault occurs, select page
from among the resident set of the
process that suffers the fault

Reevaluate allocation from time to time

Cleaning Policy

Demand cleaning

A page is written out only when it has been
selected for replacement

Precleaning
Pages are written out in batches

Cleaning Policy

Best approach uses page buffering

Replaced pages are placed in two lists
Modified and unmodified
Pages in the modified list are periodically
written out in batches
What is the motivation behind this strategy?
Pages in the unmodified list are either

reclaimed if referenced again or lost when
its frame 1s assigned to another page

Load Control

Determines the number of processes that
will be resident in main memory

Too few processes, many occasions when
all processes will be blocked and much time
will be spent in swapping

Too many processes will lead to thrashing

Multiprogramming

A

Processor Utilization

Y

Multiprogramming Level

Figure 8.21 Multiprogramming Effects

Process Suspension

If degree of multiprogramming is to be
reduced, suspend:
Lowest priority process

Faulting process

This process does not have its working set in
main memory so it will be blocked anyway

Last process activated

This process is least likely to have its working
set resident

11

Process Suspension cont.

Process with smallest resident set

This process requires the least future effort to
reload

Largest process

Obtains the most free frames

Process with the largest remaining
execution window

UNIX and Solaris Memory
Management

Paging System
Page table
Disk block descriptor
Page frame data table
Swap-use table

Table 8.5 UNIX SVR4 Memory Management Parameters (page 1 of 2)

Page Table Entry

Page frame number
Refers to frame in real memory.

Age
Indicates how long the page has been in memory without being referenced. The length and contents of this
field are processor dependent.

Copy on write
Set when more than one process shares a page. If one of the processes writes into the page, a separate copy
of the page must first be made for all other processes that share the page. This feature allows the copy
operation to be deferred until necessary and avoided in cases where it turms out not to be necessary.

Modify
Indicates page has been modified.

Reference
Indicates page has been referenced. This bit is set to zero when the page is first loaded and may be
periodically reset by the page replacement algorithm.

Valid
Indicates page is in main memory.

Protect
Indicates whether write operation is allowed.

Disk Block Descriptor

Swap device number
Logical device number of the secondary device that holds the corresponding page. This allows more than
one device to be used for swapping.

Device block number
Block location of page on swap device.

Type of storage
Storage may be swap unit or executable file. In the latter case, there is an indication as to whether the
virtual memory to be allocated should be cleared first.

Table 8.5 UNIX SVR4 Memory Management Parameters (page 2 of 2)

Page Frame Data Table Entry
Page State
Indicates whether this frame is available or has an associated page. In the latter case. the

status of the page is specified: on swap device, in executable file, or DMA in progress.

Reference count
Number of processes that reference the page.

Logical device
Logical device that contains a copy of the page.

Block number
Block location of the page copy on the logical device.

Pfdata pointer
Pointer to other pfdata table entries on a list of free pages and on a hash queue of pages.
Swap-use Table Entry

Reference count
Number of page table entries that point to a page on the swap device.

Page/storage unit number
Page identifier on storage unit.

Copy’

Mod{Refe-y; r..[Pro-
on

Page frame number Age |on ify kenc alid[

(a) Page table entry

| Swap device number | Device block number Type of storage I

(b) Disk block descriptor
Pace state Reference| Logical Block Pfdata
i count device number ointer

(c) Page frame data table entry

Reference | Page/storage
count unit number

(d) Swap-use table entry

Figure 8.22 UNIX SVR4 Memory Management Formats

UNIX and Solaris Memory
Management

Page Replacement
Refinement of the clock policy

End of Beginning
page list of page list

handspread

Figure 8.23 Two-Handed Clock Page-Replacement Algorithm

Kernel Memory Allocator

Lazy — ,
Initial value of D; is 0
buddy After an operation, the value of D; is updated as follows

(D) if the next operation is a block allocate request:
SyStem if there is any free block, select one to allocate
if the selected block is locally free
thenD; =D;+2
elseD; =D;+1
otherwise
first get two blocks by splitting a larger one into two (recursive operation)
allocate one and mark the other locally free
D; remains unchanged (but D may change for other block sizes because of the
recursive call)

(II) if the next operation is a block free request

CaseD; =2
mark it locally free and free it locally
D;=D;-2

CaseD;=1
mark it globally free and free it globally: coalesce if possible
D;=0

CaseD;=0
mark it globally free and free it globally: coalesce if possible

select one locally free block of size 2i and free it globally; coalesce if possible
D;=0

Figure 8.24 Lazy Buddy System Algorithm

Linux Memory Management

Page directory
Page middle directory
Page table

19
Virtual address
Global Directory] Middle Directory | Page Table | Offset]
Page table
Page middle »
directory Page frame
- in physical
Page memory
directory) 4

+ >
) 4
; »
crd d
register
L 11»
L

Figure 8.25 Address Translation in Linux Virtual Memory Scheme

20

